TTI09@Valico Sotto, Italy, 28.Jul.09

Immersed Atom into Jellium Sphere

treated by CHAMP

Ryo Maezono

rmaezono@mac.com

School of Information Science,

Japan Advanced Institute of Science and Technology, Ishikawa, Japan.

Collaborators

- Masayoshi Shimomoto
- Yasutami Takada
- Cyrus. J. Umrigar

Goal

As a simplest system...

Immersed Atom into Jellium Sphere

Background (1) Inverse Kohn-Sham Scheme

by reliable treatment about electronic correlation

CI/DMC/ExactDiag.

Special Case ; 2-elec. systems

2-elec. Singlet systems (He atom)

Only the lowest orbital occupied...

$$v_{XC}\left(\left[\rho\right];\vec{r}\right) = \varepsilon_{KS} + \frac{1}{2} \frac{\nabla^2 \psi_{lowest}}{\psi_{lowest}} - v_{ext}\left(\vec{r}\right) - \int \frac{\rho(\vec{r}')}{\left|\vec{r} - \vec{r}'\right|} d\vec{r}'$$

 $\psi_{lowest}(\vec{r}) = \sqrt{\frac{\rho(\vec{r})}{2}}$; (Closed-shell in a lowest orbital) $\varepsilon_{KS} = E_G + \frac{Z^2}{2}$; (KS-level equals to ionization energy)

 $v_{XC}(\vec{r})$ is obtained analytically, directory from $\rho(\vec{r})$ & E_G evaluated by Hylleraas-type Variational calc.

Umrigar and Gonze, PRA50, 3827 (1994)

Comparison with LDA/GGA

Relying on such special relations (analytically feasible inverse KS)

- A.C. Pedroza, PRA33, 804 (1986).
- Umrigar and Gonze, PRA50, 3827 (1994)

More General way

E. S. Kadantsev and M. J. Stott, Phys. Rev. A 69, 012502 (2004)

Exploiting "Haydock-Foulkes" functional for Inverse Kohn-Sham General/numerical feasibility $V_0(\vec{r})$; true potential to reproduce given $\rho_0(\vec{r})$ $V_{Trial}(\vec{r})$; trial potential Upper bound property $I[V_{Trial}(\vec{r}); \rho_0(\vec{r})] \coloneqq -\sum_{iocc.} \varepsilon_i [V_{Trial}(\vec{r})] + \int d^3r \cdot V_{Trial}(\vec{r}) \rho_0(\vec{r}) \ge I[V_0(\vec{r}); \rho_0(\vec{r})]$ Haydock-Foulkes Functional W.M.C. Foulkes and R. Haydock, PRB39, 12520 (1989).

How to get XC potential to reproduce a given $ho_0(ec{r})$ numerically?

Optimize $V_{Trial}(\vec{r})$ so that it may minimize $I[V_{Trial}(\vec{r}); \rho_0(\vec{r})]$

 $ho_0(ec{r})$ evaluated by CI methods for Ne atom and methane molecule

Background (2)

Immersed systems

Why interesting?

- Solid state theory

Firstly modelled as Homogeneous Electron Gas

Inhomogeneity effects due to ionic cores

How it dominates for the origin of FCC/BCC structures?

Energy gain by immersing atom into Jellium (Embedding Energy)

Practical application of Embedding Energy --> Effective Medium Theory M.J. Puska et.al., PRB24, 3037 (1981).

- Electronic Structure theory

Inhomogeneity effects on XC potential

Inverse Kohn-Sham for immersed system

D.C. Thompson and Ali Alavi, PRB 66, 235118 (2002)

2-electrons in a sphere with and w/o background.

Exact diagonalization to get accurate densities

Then obtain XC potentials by Inverse Kohn-Sham.

Comparison with LYP, P91, PBE, PZ

Difference investigated

Setting up the Project

Project

- DMC calculation of a Immersed Atom into HEG to get Charge densities
- Inverse Kohn-Sham scheme using Haydock-Foulkes functional minimization to get XC potential $V_{XC}(r;Z,r_s)$

Immersed Atom into HEG

Localized basis Delocalized basis

Immersed Atom into Jellium Sphere.

Specified by (r_s, Z) Infinite Potential Wall electrons (-N)Jellium Sphere Background (+N-Z) nucleus (+Z)

Infinite Potential Wall is introduced for convergence reason

Jellium Sphere

without impurity (Z=0)

Several reference QMC works available upto N=106

- P. Ballone, C. J. Umrigar, and P. Delaly, Phys. Rev. B 45, 6293 (1992) ; VMC

- F. Sottile and P. Ballone, Phys. Rev. B 64, 045105 (2001) ; DMC

Technical stuff

to be prepared

LDA generation of trial WF

Implementation of DFT for shperically symmetric systems (LDA part of PBE/Numerov method)

QMC calculation :

- High angular momentum (upto any L by recursive generation)

Matrix operation with large size
 (General treatment for Multi-det. Sometimes fails)

Inverse Kohn-Sham scheme

Implemented by Conjugate Gradient method.

... Other extensions are quite straight forward.

Occupation

upto Higher angular momentum

```
(e.g., Z=2, rs=5,25, N=60)
1s(2)
2s(2) 1p(6)
3s(2) 2p(6) 1d(10)
** ** ** 1f(14)
** ** ** 1g(18)
```

We follow the unfamiliar convention such as '1p' or '1d' as in

- F. Sottile and P. Ballone, Phys. Rev. B 64, 045105 (2001)

Results (DMC charge density calc.)

System treated

(Simple Jellium sphere without impurity)

Comparison with prev. work

(Z=0, N=106, rs=1.0/ without Infinite pot. wall)

Energy (eV/electron.) Std.err.

12.7965	-	LDA,S&B
12.7987	-	LDA, present
12.8678	*	VMC, S&B
12.8539	0.0047	VMC, present
12.8184	0.0043	DMC, S&B
12.8158	0.0001	DMC, present

- F. Sottile and P. Ballone, Phys. Rev. B 64, 045105 (2001)

System treated

(with Infinite pot. wall)

(Z=2, rs=5.25, N=60)

Densities Z=2, rs=3.0, N=60

Densities Z=2, rs=5.25, N=60

Results

(Inverse Kohn-Sham scheme)

Atomic Case (Be)

(Benchmark)

Atomic Case (Ne)

(Benchmark)

Jellium Sphere (z=0) Z=0. rs=1. N=106

Jellium Sphere (z=2) rs=5.25, N=60

