The Jastrow Factor

Pablo Lopez Rios
26-Jul-2009

The Jastrow Factor

= Typical trial wave function — Slater-Jastrow:

¥V, (R)=¢""'V ((R)

= |[n VMC, Jastrow describes correlations

= DMC is like VMC with perfect Jastrow; actual
Jastrow merely stabilizes method

= VMC is much simpler/cheaper than DMC —
pushing VMC quality towards DMC is good

The Jastrow Factor

= Jastrow function: sum of terms, e.g.,

J(R)=J, (R)+J, ,(R)+J

R)+...

e—e—n(

= Term: sum over particle groups of a function, e.g.,

een ZZQ”"zl”

= Function: expansion on basis of functions of
single relative position vector, e.g.

Q(r,,r,.r, Z Z Ny by (1,0, (10, (r)

V I’ll IJ]I

Why Generalize?

= All Jastrow terms constructed the same way

= No need to implement new terms (e.g., four-
body)

= Easy to implement new functional bases
= Easy to add anisotropies

= Easy to add dependencies on external
potentials

General Jastrow Term: definition

1l v v S
S m(R)= 'm!) IED I’ Ala) X
RIMEGow =i 1#..#1, WViigaes i1 oy
% g 451{1;(:“)0(1',3)(,,-1_“%) ﬁ @iij?>1y(ria]y)
l Definition
N M p q
Jn m(R): Z Z Z Z Ag}}{{j}}x
i <<y, L<oo <L (v 00 (g,)
< H @ia;mo(m(’,i i;s) ’ @i (i) (,,.l ;)
x<p Y xy

Simplified form

“One electron” Jastrow

Properties:

One-electron Jastrow for i-th particle

Jym(R')=J, ,(R)=

n,m

J. (R")—-J (R)

n,m n, m

-
Z;J

i=1

1. If two configurations only differ in the position of particle i,
change in total Jastrow is change in one-electron Jastrow

2. Total Jastrow value can be
computed from one-electron Jastrow
for all electrons

In this form, the gradient is calculated simply by multiplying the running
accumulator for the value times a simple sum of gradients of basis functions.

Basis functions being exactly zero are an issue, but | don't expect
this to ever happen in practice. The code currently ignores
contributions to the gradient from zero-valued functions.

Likewise for 2

H 2 PG‘IO‘ ig PO’ZO’ lg
the Laplacian n VZ QSV (o)(rii) V G 7 ’(r)
i B l V”g g
+ — +
_ o (i)o(ig) o (i) o(ig)
p=2 q15‘4'1(3) (riiﬁ) @ iy (r”B)
2

The Linear Parameters

= The linear parameters have the following
property by definition:

Aﬁn{p}ﬁm{g} _ A{p}{g} P _being an arbitrary
PviP (u) — MvHul permutation of k elements

= Thus, all sets of {P} and {S} which only differ in
the ordering are equivalent

= The ordered set of values {P}, {S} is called the
signhature of a particle group

= Each signature corresponds to a unique set of
parameters

= {P} are particle-particle types

= {P} can be written as a symmetric matrix

= For a typical electronic calculation we would have:

1
2

P=

2
1

- Rows/columns ordered as electron up, electron down
- Distinguishes between parallel- and antiparallel-spin pairs
- Does not distinguish between up-up and down-down

= For an electron-hole system we could have:

W W N —
W W == N
DN o W W

B O W W

- Rows/columns ordered as e-up, e-down, h-up, h-down

- Like above within electrons, and within holes

- Distinguishes between electron pairs and hole pairs

- All electron-hole pairs indistinguishable regardless of spin

= [n a term with n=3, m=0 (three-electron), given:

P=(1 2

2 1

we can have the following combinations of
particle types (second arrow means sorting):

= Types: (1,1,1) — pairs: (1,1,1) — signature (1,1,1)
= Types: (1,1,2) — pairs: (1,2,2) — signature (1,2,2)
= Types: (1,2,2) — pairs: (2,2,1) — signature (1,2,2)
= Types: (2,2,2) — pairs: (1,1,1) — signature (1,1,1)

= Therefore we have two independent sets of
linear parameters (channels)

{S} are particle-nucleus types

{S} can be written as a rectangular matrix

= For a water molecule we could have:

1

Y

1

$=(2 3

3

- Rows ordered as O, H, H; columns as e-up, e-down

- Distinguishes between O and H

- Does not distinguish the two H's

- Does not distinguish up- and down-electrons in relation to O
- Distinguishes up- and down-electrons in relation to H

Full signatures are obtained from both {P} and
{S} (ordering occurs within each set, though)

NB, basis functions depend on a single Pﬁ orsS :

channel splitting is independent from that of
linear parameters

Constraints on the Linear Parameters

A A A

P . P |(Pl=[P], P

n’ m n

(Sj=(5)

m

Repeated signature indices imply symmetry with respect to exchange of bottom indices.

0J(R)
= i
a rij r;=0
. : Cusp conditions
This is the spherical Constant that depends
average of the on the attributes of particles
gradient of J with involved, dimensionality, etc

respect to r at rﬁ=0

Cusp Conditions

= Non-zero cusp only applicable to two-body terms:

an’()(R) = Zp: A" V’J rij) =l .
5rij r;=0 v,=1 " arij r;=0 ’
S
aJ1’1<R) — i ASH a@uﬂ(ril) =1”
ari[ry=0 p,=1 . aril ry =0 '

= Of course, only one e-e term should have a non-
zero cusp for a given particle-pair type. Same
goes for e-n term.

Cusp Conditions

= The particle-particle no-cusp condition is:

p q P 5¢Po<i>o<1> r
S Y DL | EASL S
Vi Vi bpman AMa Mo fymim | Vi ij 7=

5 TP e first sun})ls constrained to index pairs such that
G, 1@, | gives the same function

= The second sumsls constrained to index pairs such
that @ "(ry |@,"(r, | gives the same function

= In many common cases, only the square bracket
needs to be zero

ZZB

Cusp Conditions

= The particle-nucleus no-cusp condition is:

p.q 9 00" Fi
2. 2 [Aw|—3 / X
(Vi Mis Jama Hir | T ry =0
. lg da‘{):i)a(iﬁ)(riiﬁ) @iZ(Jiﬁ)J(riBJ)= 0

- ThPe first sumSis constrained to index pairs such that
@, ", |0, (r, ;| gives the same function

Vii, Hi .
= In many common cases, only the square bracket
needs to be zero

Pseudocode for Term Evaluation

Get basis and cutoff functions
Loop over ion vector(l:m)
Loop over ispin vector(l:n)
Get signature and permutation
Loop over ie vector(1l:n)
Get cutoff functions (incremental)
Loop over nu vector(l:(n*(n-1))/2)
Get product of e-e basis functions (permuted, incremental)
Loop over mu vector(l:n*m)
Get product of e-n basis functions (permuted, incremental)
Accumulate contribution
End loop over mu vector
End loop over nu vector
End loop over ie vector
End loop over ispin vector
End loop over ion vector

'

It is convenient to write optimized versions
of the loops, for performance.

Code Structure

wfn_utils — —

 (for book-keeping
functions only)

\
W gjastrow \

gbackflow |

~

cdf gbasis

Basis-Function Handling

= The gbasis module handles basis and cutoff
functions

= Sharing of basis functions among several terms

Is allowed for functions without parameters in
them

= Sharing of basis functions between Jastrow and
backflow modules also possible

The CASINO Data Format (CDF)

= Format for structured data resembling YAML
= Nodes in the structure may be:

= scalars (keyword < value, or value only)
= blocks (keyword < set of children nodes)

= |ndentation used to indicate depth

= Alternatively, square brackets and commas can
be used for children of a block

= Values are strings, converted to other types on
request

= Keywords are case- and whitespace-insensitive

The CASINO Data Format (CDF)

JASTROW:
Title: 2D HEG
TERM 1:
Rank: [2

’]
Rules: [1-1 =
e-e basis:
e-e cutoff:
Type: polynomial
Constants: [C: 3]
Parameters:
Channel 1-1: [L: [4.51888387, optimizable]]
Channel 1-2: [L: [4.51888387, optimizable]]
Linear parameters:
Channel 1-1:
c 1: [5.10744890784656D-003, optimizable]
[-2.215745836891912E-004, fixed]
.61049912223271D-003, optimizable
.71501823949904D-003, optimizable
.26629894651862D-003, optimizable
.69279305571898D-003, optimizable
.21802169144595D-003, optimizable
.11189983328774D-004, optimizable
.50406603295831D-005, optimizable

2-2]

0
1
[Type: polynomial, Order: 9]

OW o0 JOoY ULk WD

QQQa0aa0aaaa
I—‘l\JI—‘wO\U'Il\J

[
[-
[
[-
[
[-
[

) b b b) b e

1 _ HF _
\

c-C
N -

e-e + e-N ’/

~ 10-2 | \ / i
g - e-e + e-N +e-e-N o -
ot o2 :

" 10° E e-e + e-N + e-N-N _|
i [1 e-¢ + e-N + e-e-N + e-N-N .

10° 2 ™~)

/ e-e¢ + e-N + e-e-N + e-N-N + e-e-N-N E

I\Illll

B

10” 10 10" 10
VMC variance (a.u.)

p—
C:Dl

Current State of the Project

= CDF — done

= Channel splitting — done

= Basis set evaluation — done (basic ones)

= Basis set sharing — done

= Term evaluation — done

= Initial tests — done

= Speed — done

= Constraints — done

= Tests on interesting systems — In progress

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

