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The ideal 1d model

The model is simply 1d electrons on a uniform positive background

Many previous studies used regularized interactions so that the
electrons may coalesce (and get past each other)

Here we consider the Coulomb interaction, diverging as 1/r at
coalescence points

Where might this model be relevant?



Nanowires of atoms

(left) Pt atoms on Ge. From Oncel et al. PRL 95, 116801 (2005)
(right) Au atoms on Ge. From Schäfer et al. PRL 101, 236802

(2008)



Carbon nanotubes

Single-walled CNTs in particular seem to exhibit behaviour
characteristic of electrons in 1d.

(images: http://www.ipt.arc.nasa.gov/carbonnano.html)



(left) charge-transfer salts (e.g. (BEDT-TTF)2X)
(right) semiconductor devices

Atoms (both fermions and bosons) in anisotropic traps, quantum
Hall edge states, etc.



In 1d, particles cannot avoid each other

The interesting physics comes from the reduced dimensionality and
the strong correlation that is a consequence of the dimensionality.

Experimentalists look for power law behaviour in various quantities
and spin-charge separation as a signature of 1d behaviour...





Strong correlation
Non-Fermi liquid behaviour is characterized by

lim
N→∞

Z = 0 ,

where

Zσ,kF
=

∣∣∣〈0,N + 1 | â†σ,k | 0,N〉
∣∣∣2
|k|=kF

is the renormalization constant.

You may recognize Z as the size of the step at kF in the
momentum distribution - this is a result of Z being the weight
under the quasiparticle peak in the spectral function.



QMC calculations on the ideal 1d electron liquid

I The g.s. nodes are known - no fermion sign problem

I Twist averaging is simple - the grand canonical ensemble is
the same as the canonical ensemble

I We can get very good wavefunctions - expectation values
hardly differ at all between VMC and DMC



The wavefunction

ψ(R) = exp [J(R)]
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where φn(x) = exp(iknx) and x ′ is related to x by a backflow
transformation. The Jastrow factor is
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where xij = |xi − xj |.



Wavefunction quality

Method % Ecorr retrieved

DMC 100
VMC-SJBF 99.99996(6)
VMC-SJ 99.9752(6)
HF 0

(this is for rs = 15 au, N = 15 - the numbers above are typical)



Momentum density

ρ(k) =

〈
1

2π

∫
Ψ(r , x2, x3, ..., xN)

Ψ(x1, x2, x3, ..., xN)
exp[ik(x1 − r)] dr

〉
x1,...,xn
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Pair correlation function

g(|x1 − x2|) =
n(x1, x2)

n(x1)n(x2)
, gnon−int(x) = 1−

∣∣∣∣sin(kF x)

kF x
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The nth point in MP grid of size N/2 (symmetry) was chosen by

kn =
2n − N − 1
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Luttinger model parameters

GS correlation functions may be found exactly (for the model, at
least) by bosonization, but the parameters may not.

For example, the momentum density behaves as

n(k)− n(kF ) ∝ sgn{k − kF}|k − kF |α

when |k − kF | is small. The oscillations in the PCF also decay
characteristically ∝ exp(−c

√
ln x)

α may be written in terms of the Luttinger liquid parameter Kρ,

α =
1

4

(
Kρ +

1

Kρ
+ 2

)
Many people have calculated these quantities for real systems...



R. Egger (Eur. Phys. J. B 3, 281 (1998)) calculated
(approximately) the parameter for a single-wall carbon nanotube

Kρ =

(
1 +

8e2

πκ~v

[
ln

(
L

2πR

)
+ 0.51

])−1/2

,

which gives Kρ = 0.18 for experimentally-determined parameters
and a tube of length 3µm.

Others have found Kρ = 0.2 for SWNTs and 0.20 < Kρ < 0.23 for
the Bechgaard salts.

Getting Kρ from our data is the next thing to do...



Summary

I Finding (density dependent) values of Kρ so that
experimentalists can say how close they are to ideal

I Observing LL-like behaviour and confirming the region of
validity of the Luttinger model

I Producing exact results for the idealized system
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Step in the momentum distribution

The spectral function A(α, ω) is the probability density for
increasing or decreasing the energy by an amount between ~ω and
~(ω + dω) upon adding or removing a single particle in the state
| ψα〉

α can describe spin, momentum, etc.

Forget spin for the moment and look at momentum states. The
T = 0 momentum density is given by

nk =

∫ µ/~

−∞
A(k, ω)dω



In 2 and 3d, A(α, ω) has a (Lorentzian) quasiparticle peak, the
width of which vanishes in the limit k → kF as |k − kF |2.

When k > kF , the quasiparticle peak is at a frequency ω > µ/~
and so does not fall within the limits of the integral, whereas for
k < kF its contribution is its weight, Z .

Since it is a δ-function at the Fermi surface, the passing of the
quasiparticle peak through ω = µ/~ at k = kF results in the value
of nk having a discontinuity.

In 1d, there are no quasiparticles and the system is
strongly-correlated (Z = 0), so there is no step in nk.
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