'Mindless' QMC Benchmarking

Martin Korth

Czech Academy of Science Prague / University of Münster

QMC in the Apuan Alps V — 30/07/2009

Outline

Quantum Monte Carlo @ Home

- Volunteer Computing for Quantum Chemistry!

Benchmarking in Quantum Chemistry

... and the new 'Mindless' Benchmarking approach

'Mindless' DFT Benchmarking

- ... and how to learn chemistry with random numbers
- 'Mindless' QMC Benchmarking
- FNDMC for Quantum Chemistry?

Part I

Quantum Monte Carlo @ Home

QMC@HOME: A distributed QMC supercomputer

Quantum Monte Carlo calculations ...

- an advantage of QMC that is becoming increasingly important with high-density (multi-core, multi-socket) and distributed (cluster, grid) computing: massively parallel calculations
- QMC is even suited for a very special 'flavor' of distributed computing: Volunteer Computing (VC)

... via Volunteer Computing

- majority of the world's computing power no longer concentrated in supercomputer centers, instead distributed in hundreds of millions of personal computers
- ► VC invites the public to donate computing power to science

QMC@HOME: How does it work?

Volunteer Computing part

BOINC – a software platform for Volunteer Computing

QMC part

QAHmolqc – based on the QMC code Amolqc by Arne Lüchow

Project Statistics

- over 63,000 registered users and over 145,000 registered hosts
- over 11,000 highly active compute nodes
- over 22 TeraFLOPS average computing power
- equivalent to rank 258 on the international top500.org supercomputer list (rank 23 on the German list)
 - you need over 3000 Xeon cores to get there!
- \rightarrow A supercomputer for the price of a mid-size server system!

In need for a few hundred processors? Contact me for help setting up your BOINC project!

S22 benchmark set Jurečka et al., Phys. Chem. Chem. Phys., 2006, 8, 1985.

Dispersion dominated:

For details see: MK/Lüchow/Grimme, J. Phys. Chem. A, 2008, 112, 2104.

Comparison with QMC results from other groups: energetic ordering of small water clusters

Water hexamer calculations via QMC@HOME

▶ HF or B3LYP, BQZ(-g)/ECP, time step 0.005, 100 walkers

Water hexamer calculations from Santra et al. (JCP 2008, 129, 194111)

► B3-LYP/VTZ(-f)/ECP, time step 0.0125, 800 walkers

Results:

Isomer	HF/BQZ	B3-LYP/BQZ	Santra et al.
PRISM	0.00(23)	0.00(15)	0.00(15)
CAGE	0.13(26)	0.32(12)	0.33(14)
BOOK	0.59(22)	0.58(12)	0.57(15)
CYCLIC	1.63(28)	1.63(13)	1.54(15)

QMC@HOME: Further activities

QMC GPU project in cooperation with NVIDIA

- enable QAHmolqc for FNDMC GPU computing via QMC@HOME
- in our case: big gains even without any speedup

QMC desktop grid project with Fujitsu Technology Services

- 'burning' tests for consumer computers consume a lot of energy
- we are now able to use this energy for scientific computing

Other MEST methods

- from 'Quantum Monte Carlo @ home' to 'Quantum Mechanical Computations @ home'
- Robert H
 ünerbein (Grimme Group, M
 ünster): DFT and MP2 with Orca on QMC@HOME (data parallel, e.g. for parameter sweeps)

Part II Benchmarking in Quantum Chemistry

Why benchmarking?

The goals

- evaluate ('new' or improved) computational methods to ...
- ... judge the applicability of a method for specific cases
- ... find starting points for further improvements
- ... sell 'your' method(s)

The problems

- the availability of reference data:
 the 'reference' problem (not considered here)
- the composition of the test sets: the 'selection' problem

What about the existing benchmark sets?

'First generation'

- \blacktriangleright experimental references explicitly required \rightarrow very stable molecules, a lot of redundant information
- ► atomization energies → the worst case scenario of bond breaking, quite far away from everyday quantum chemistry (PBE!)
- ▶ e.g. G1, G2, G3, ...

'Second generation'

- ► model systems with theoretical references → limited to a very narrow structural space by chemical intuition (vs. 'chemical universe' of possible structures)
- ► relative (reaction) energies → more meaningful to judge performance for 'chemical' questions
- ▶ e.g. S22, IDCH7, ISO34, ...
 - \rightarrow existing benchmark sets are strongly biased

The new approach: Diversity Oriented Benchmarking

Construct unbiased benchmark sets for thermochemistry with randomly generated molecules:

- put 8 randomly chosen atoms on the corners of a cube
- ▶ optimize this 'Artificial Molecule' (AM) with PBE-D/TZVP
- ▶ sort out e.g. multi-reference cases (via T1/D1 diagnostic)
- ▶ decompose AMs systematically into small molecules, e.g. 2 AM(NLiBHCHHB) + 8 H₂ → 4 BH₃ + 2 CH₄ + 2 LiH + 1 N₂

The opening of the narrow structural space of chemical intuition produces demanding test cases in an unforeseeable manner!

The 'mindless' details

- the basic idea: generate 'Artificial Molecules' (AMs)
- not a molecule in the classical sense, instead a randomly chosen minima on the energetic hypersurface of a random conglomerate of atoms
- ▶ BUT we have to make sure that the AMs are of use for QC:
 - choose general conditions (i.e. the constraints to randomness): How many AMs? How many atoms per AM? What elements with what probability? What spatial arrangement? What complexity of electronic structure? What reaction scheme?
 - generate random geometries
 - check for wanted complexity
 - generate reference data
- vast amount of completely different benchmark sets can be systematically generated, characteristically depending on the countless possible answers to the above named questions

Two example benchmark sets

- both with 300 initial AMs, each with exactly 8 atoms
- main group elements up to chlorine, excluding Nobel gases
- different elemental occurrence: '9-3-1' set and 'organic' set
- PBE-D/TZVP optimization (w. large iter. limits) starting from corners of a cube with an edge length of 2 a.u.
- all systems uncharged, roughly 25 percent doublet open-shell, HOMO/LUMO-gap larger than 0.5eV and T1/D1-diagnostic (from CCSD(T)/cc-pVDZ scan) smaller than 0.02/0.10
- systematic decomposition into hydrides and diatomic molecules, only H₂ as additional reactant, whole number stoichiometry

83 '931' and 84 'ORG' AMs with very diverse and unusual structures (despite being small, single-reference, main-group)

Element distributions (in percent)

	MB08-931			N	1B08-OF	۲G
Element	Initial	Final	Ratio ^a	Initial	Final	Ratio ^a
Н	69.2	64.8	0.94	61.8	58.2	0.94
Li	3.3	3.5	1.061	1.9	1.0	0.53
Be	3.3	3.6	1.091	0.5	0.0	0.00
В	3.3	4.7	1.42	1.0	1.8	1.80
С	3.3	3.9	1.18	15.5	17.6	1.14
Ν	3.3	3.8	1.15	3.9	4.3	1.10
0	3.3	2.9	0.88	3.9	4.5	1.15
F	3.3	3.2	0.97	1.0	1.3	1.30
Na	1.1	1.1	1.00	1.0	0.3	0.30
Mg	1.1	1.2	1.09	1.0	1.2	1.20
AI	1.1	2.0	1.82	1.0	1.5	1.50
Si	1.1	1.4	1.27	1.9	2.4	1.26
Р	1.1	1.2	1.09	1.9	2.7	1.42
S	1.1	1.7	1.55	1.9	1.9	1.00
CI	1.1	1.4	1.27	1.9	1.3	0.68

^a Ratio of final to initial distribution.

Examples from the combined MB08-165 set

More 'mindless' details

Reference values

- RCCSD(T)/CBS (extrapolated from cc-pVTZ and cc-pVQZ)
- core correlation effects estimated from difference AE-RCCSD(T)/cc-pCVTZ and RCCSD(T)/cc-pVTZ
- core effects small (MAD 1 kcal/mol, MAX 5 kcal/mol) compared to average reaction energy (117 kcal/mol)
- final references correspond to all-electron (AE) complete basis set limit (CBS) CCSD(T) data
- commonly assumed to reach (sub-) 'chemical accuracy' (1 kcal/mol) for single-reference cases

Distribution of reaction energies (est. AE-CCSD(T)/CBS)

Advantages of the MB approach

In general

- basic principle completely general, albeit every generated test set is necessarily biased
- transparency of the selection process: unperceived biases are turned into known constraints (as restrictions have to be explicitly specified)
- related work: 'random' minima search (e.g. Saunders 2004, Schleyer 2006, Needs 2006+)

The MB08-165 set

- reaction energies chemistry!
- beyond standard fit-sets only 'robust' methods survive (those with 'extrapolative power')!

Part III

'Mindless' DFT Benchmarking

M. Korth, Stefan Grimme, JCTC 2009 DOI:10.1021/ct800511q RMS over all DFT errors for each reaction

(Relative) MAD over all DFT errors for each elements

Performance of DFT methods

Perdew: Jacob's ladder of DFT development

Mindless DFT Benchmarking

- a diversity oriented approach for the preferably unbiased generation of benchmark data
- relying on systematic constraints rather than uncontrolled biases, two example benchmark sets consisting of randomly generated 'Artificial Molecules' were created
- despite restriction to small single-reference main group systems, very diverse and unusual structures were produced
- the DFT results for the MB08-165 benchmark sets perfectly fits to the Jacob's ladder of DFT development, giving further support for this metaphor
- our data assists previous claims that meta-GGAs cannot be considered a major improvement over GGAs
- state-of-the-art functionals perform significantly better than 'standard' GGAs and also Hybrids

Part IV 'Mindless' QMC Benchmarking

FNDMC for Quantum Chemistry?

Absolute energies - unbeatable!

- 'easy' to account for over 90% of the correlation energy
- several 'benchmarks' published

Atomization energies - very good!

- ▶ Grossmann (JCP, 2002, 117, 1434)
- ► G1 set / 55 Molecules
- FNDMC: MAD 2.9 kcal/mol
- CCSD(T)/aug-cc-pVQZ: MAD 2.8 kcal/mol

Reaction energies - not so clear ...

- Manten and Lüchow (JCP 2001, 115, 5362)
- Test set from Helgaker group for CC / 17 entries
- FNDMC nearly as good as CCSD(T)/cc-pVTZ?

Technical details

Trial wave functions

- Slater-Jastrow type guidance functions with HF or DFT determinants and Schmidt-Moskowitz type correlation functions
- triple and quadruple-ζ (without g functions) basis sets and soft-ECPs by Burkatzki *et al.*, termed here 'BTZ' and 'BQZ'
- 'SM9' Jastrow type (4 ee + 3 en + 2 een), parameters optimized by variance minimization

Simulation parameters

 250-2000 work-units, each of n*4000 steps with an ensemble of 100 walkers and a time step of 0.005

 \rightarrow not very sophisticated (but common) approach to FNDMC calculations – applicable in a 'black-box' manner

The Helgaker test set - references

No.	reaction	cc-pVTZ	cc-pVQZ	cc-pV5Z	cc-pV(Q5)Z	experiment
1	$CH_2 + H_2 \rightarrow CH_4$	-128.3	-128.76	-128.83	-128.97	-129.9(5)
2	$C_2H_2 + H_2 \rightarrow C_2H_4$	-49.4	-49.37	-49.32	-49.23	-48.5(5)
3	$C_2H_2 + 3H_2 \rightarrow 2CH_4$	-107.7	-107.42	-107.14	-106.89	-106.5(5)
4	$N_2H_2 \rightarrow N_2 + H_2$	-42.8	-41.85	-41.41	-41.18	-41.6(0)
5	$CO + H_2 \rightarrow H_2CO$	-3.8	-4.57	-4.93	-5.16	-5.0(2)
6	$N_2 + 3H_2 \rightarrow 2NH_3$	-34.9	-37.75	-38.87	-39.46	-39.2(2)
7	$F_2 + H_2 \rightarrow 2HF$	-130.2	-134.00	-134.93	-135.47	-134.5(2)
8	$O_3 + 3H_2 \rightarrow 3H_2O$	-217.8	-223.23	-224.85	-225.77	-222.8(5)
9	$H_2CO + 2H_2 \rightarrow CH_4 + H_2O$	-57.6	-59.03	-59.51	-59.77	-60.0(2)
10	$H_2O_2 + H_2 \rightarrow 2H_2O$	-83.8	-86.34	-87.15	-87.48	-87.2(2)
11	$CO + 3H_2 \rightarrow CH4 + H_2O$	-61.4	-63.60	-64.45	-64.93	-65.0(2)
12	$HCN + 3H_2 \rightarrow CH_4 + NH_3$	-74.8	-76.09	-76.57	-76.76	-76.4(7)
13	$HNO + 2H_2 \rightarrow H_2O + NH_3$	-102.0	-104.86	-105.89	-106.47	-106.0(2)
14	$HNC \rightarrow HCN$	-15.0	-14.78	-14.82	-14.90	-15.3(0)
15	$H_2O + F_2 \rightarrow HOF + HF$	-27.5	-28.36	-28.50	-28.67	-30.8(10)
16	$CO_2 + 4H_2 \rightarrow 2H_2O + CH_4$	-54.0	-56.85	-58.07	-58.63	-58.3(2)
17	$2CH_2 \rightarrow C_2H_4$	-198.2	-199.47	-199.83	-200.28	-201.6(7)
	MAD (to CC)	2.72	0.96	0.36	-	(0.73)
	MAD (to exp)	2.71	1.01	0.69	0.73	-

- the nice thing about Wave Function Theory methods: you clearly know which way to go ...
- cc-pV(Q5)Z fits the experiment with chemical accuracy

The Helgaker test set - FNDMC

No.	reaction	LTZ	BTZ(-f)	BTZ	BQZ	CC/(Q5)Z
1	$CH_2 + H_2 \rightarrow CH_4$	-135.0	-135.2(3)	-135.5(3)	-135.3(3)	-129.0
2	$C_2H_2 + H_2 \rightarrow C_2H_4$	-50.7	-50.3(4)	-50.4(4)	-50.5(4)	-49.2
3	$C_2H_2 + 3H_2 \rightarrow 2CH_4$	-112.6	-112.1(5)	-112.9(5)	-112.5(5)	-106.9
4	$N_2H_2 \rightarrow N_2 + H_2$	-40.7	-41.8(5)	-42.6(5)	-42.2(5)	-41.2
5	$CO + H_2 \rightarrow H_2CO$	-9.8	-9.5(5)	-8.9(5)	-9.3(5)	-5.2
6	$N_2 + 3H_2 \rightarrow 2NH_3$	-48.4	-45.1(5)	-45.2(5)	-46.0(7)	-39.5
7	$F_2 + H_2 \rightarrow 2HF$	-145.5	-143.3(6)	-144.9(5)	-144.2(5)	-135.5
(8)	$O_3 + 3H_2 \rightarrow 3H_2O$	-254.1	-247.2(7)	-248.9(7)	-247.6(7)	-225.8
9	$H_2CO + 2H_2 \rightarrow CH_4 + H_2O$	-64.4	-61.5(5)	-62.2(5)	-61.6(5)	-59.8
10	$H_2O_2 + H_2 \rightarrow 2H_2O$	-92.2	-91.3(5)	-91.5(5)	-90.9(5)	-87.5
11	$CO + 3H_2 \rightarrow CH4 + H_2O$	-74.2	-71.0(5)	-71.1(5)	-70.9(5)	-64.9
12	$HCN + 3H_2 \rightarrow CH_4 + NH_3$	-83.9	-82.5(5)	-82.7(5)	-83.6(6)	-76.8
13	$HNO + 2H_2 \rightarrow H_2O + NH_3$	-115.8	-113.7(5)	-114.0(5)	-114.3(6)	-106.5
14	$HNC \rightarrow HCN$	-15.2	-14.7(4)	-14.7(4)	-14.9(4)	-14.9
15	$H_2O + F_2 \rightarrow HOF + HF$	-31.8	-30.5(7)	-32.0(7)	-31.7(7)	-28.7
16	$CO_2 + 4H_2 \rightarrow 2H_2O + CH_4$	-66.1	-63.1(6)	-63.0(6)	-61.7(6)	-58.6
17	$2CH_2 \rightarrow C_2H_4$	-208.1	-208.5(4)	-208.3(4)	-208.5(4)	-200.3
	MAD (to CC)	5.3	4.1	4.4	4.3	-
	MAD (to exp)	5.7	4.4	4.7	4.6	0.6

- nodes 'saturated' at TZ without f functions (for general thermochemistry)
- sizable improvement with Burkatzki et al. basis sets and ECPs
- ► FNDMC(HF/BQZ) not as accurate as CCSD(T)/cc-pVTZ

The ISO34 test set Grimme/Steimetz/Korth, JOC, 2007, 72, 2118

 \rightarrow accuracy of FNDMC(HF/BQZ) comparable to MP2/TZVPP

C_{20} carbon cluster - cage and bowl isomers

Method	Bowl	Cage
MR-MP2/TZV2d1f//HF/6-31G*	0.0	29.3
MR-MP2/TZV2d1f//MP2/TZV(2d2f)	0.0	4.4
AE-FNDMC(HF-TWF)//HF/6-31G*	0.0	48.4(120)
ECP-FNDMC(HF/LQZ)//MP2/TZV(2d2f)	0.0	24.5(6)
ECP-FNDMC(HF/BQZ)//MP2/TZV(2d2f)	0.0	23.3(4)
ECP-FNDMC(DFT/LQZ)//MP2/TZV(2d2f)	0.0	20.2(6)
ECP-FNDMC(DFT/BQZ)//MP2/TZV(2d2f)	0.0	19.4(3)
CCSD(T)/CBS	0.0	11.4

very good FNDMC results for a quite complicated case!

Benchmarking FNDMC for Quantum Chemistry

Why?

- Quantum Chemistry is not Solid State Physics
- QMC data for molecular systems is still quite limited
- no QMC equivalent of extensive DFT/WFT benchmarking
- does the existing data basis allow judgments about the performance of FNDMC for Quantum Chemistry?

What?

- use the 'unbiased' MB08-165 set
- benchmark FNDMC for thermochemistry
- ▶ first step: compare mean-field approaches, ECPs, basis sets, ...
- second step: evaluate more sophisticated FNDMC approaches

Mindless QMC Benchmarking – work in progress ...

Method	MAD	MD	RMSD	Δ
FNDMC/HF-BQZ-SM9 ^a	7.0	2.0	9.5	61.8
FNDMC/DFT-BQZ-SM9 ^b	6.5	2.0	8.4	54.5
B3-LYP/QZVP	8.2	6.9	10.6	45.5
B3-LYP-D/QZVP	6.6	-2.7	8.8	49.1
CCSD(T)/cc-pVTZ	5.5	-5.3	7.0	24.6
CCSD(T)/cc-pVQZ	2.6	-2.5	3.4	11.8

MB08-165

[a] 161 from 165 entries [b] 159 fr. 165

statistical errors between 0.4 and 1.2 kcal/mol, on average 0.8 kcal/mol average reaction energy of 117 kcal/mol

worst case:

 $2 AM_{CHHCCCCO} + 18 H_2 \rightarrow 10 CH_4 + O_2$

-570.6 kcal/mol AE-CCSD(T)/CBS -530.2(12) kcal/mol FNDMC(HF/BQZ)

Mindless QMC Benchmarking – error distribution

Mindless QMC Benchmarking - work in progress ...

Summary

Preliminary conclusions

- nodes seem to be 'saturated' already at TZ(-f) level (for general thermochemistry)
- Burkatzki basis sets and ECPs are an improvement in most cases
- DFT-TWFs are advantageous for electronically complicated cases
- the Fixed Node Error is a serious limitation in Quantum Chemistry
- ... but seems to be quite systematic somehow ...

Further work

- extensive benchmarking of FNDMC with the MB08-165 set (mean-field approaches, basis sets, ECPs, ...)
- evaluation of more sophisticated FNDMC approaches

Acknowledgments

Cooperation partners

- Stefan Grimme, University of Münster (D)
- Arne Lüchow, RWTH Aachen University (D)
- Pavel Hobza, Czech Academy of Science Prague

Funding

 QMC@HOME was funded by the Sonderforschungsbereich 424 established by the Deutsche Forschungsgemeinschaft

And of course many thanks to ...

... all QMC@HOME volunteers for contributing
 ... and you for your attention!

Performance of SOTA DFT functionals

