Point Defects and Diffusion in α -Al₂O₃

N.D.M. Hine^{1,2,3} K. Frensch^{1,2,3} M.W. Finnis^{1,2,3} <u>W.M.C. Foulkes^{1,3}</u> A.H. Heuer^{3,4}

¹Department of Physics, ²Department of Materials, ³Thomas Young Centre Imperial College London

⁴Department of Materials, Case Western Reserve University

International Conference on QMC in the Apuan Alps V, 2009

A D F A 同 F A E F A E F A Q A

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1 Why?

- 2 Alumina and the Corundum Conundrum
- 3 Thermodynamics of Point Defects

4 Calculations

6 Results

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1 Why?

- 2 Alumina and the Corundum Conundrum
- 3 Thermodynamics of Point Defects
- 4 Calculations
- 5 Results

AI_2O_3

Ti/Fe doped

Cr doped

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Same mineral, different defects.

Alumina is the "prototypical" high-temperature ceramic. Properties depend strongly on defects and their diffusion coefficients.

- Electrical conductivity
- · Grain growth
- Plastic deformation
- · Oxide film growth
- Sintering and creep

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Alumina is the "prototypical" high-temperature ceramic. Properties depend strongly on defects and their diffusion coefficients.

- Electrical conductivity
- · Grain growth
- Plastic deformation
- Oxide film growth
- Sintering and creep
- No transition metals or rare earths!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(ロ) (同) (三) (三) (三) (○) (○)

- Classical force fields often inadequate.
- Much existing QM work on defects in oxides is bad. (There is good work on defects in semiconductors.)
 - Published DFT formation energies of neutral oxygen vacancy in alumina:
 - $12.92 \ \text{eV}, \quad 10.14 \ \text{eV}, \quad 5.83 \ \text{eV}, \quad 7.08 \ \text{eV}, \quad 13.3 \ \text{eV}.$
 - Charged defects are even harder!
- Few existing QM studies have considered the thermodynamics of defect formation/migration.
- Model for many other problems of technological and scientific interest.

Why?

Solid Oxide Fuel Cells

- ZrO₂ (open structure).
- CeO₂ (variable valence):

Why?

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへで

Solid Oxide Fuel Cells

- ZrO₂ (open structure).
- CeO₂ (variable valence):

Why?

Solid Oxide Fuel Cells

Outline

1 Why?

 Alumina and the Corundum Conundrum The Perfect Crystal Point Defects Aliovalent Substitutional Defects The Corundum Conundrum

3 Thermodynamics of Point Defects

4 Calculations

5 Results

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへの

Crystal Structure

Complicated because of 2:3 coordination:

Supercell containing $2 \times 2 \times 1$ copies of the hexagonal unit cell, with 120 atoms. Left: side view along the **a** axis. Right: top view down the **c** axis.

Density of States

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Bonding and Electrical Properties

(日) (日) (日) (日) (日) (日) (日)

- Mainly ionic (Al^{3+} and O^{2-}).
 - Clear from bandstructure.
 - Born effective charges close to +3 and -2.

But with some covalent character.

- · Point-charge and shell-model force fields do not work well.
- Wide band gap (\sim 9eV) insulator.
- High dielectric constant (~9).

Point Defect Types

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Defects in insulators may exist in various charge states.

Formation of Neutral O Vacancy

Perfect crystal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Formation of Neutral O Vacancy

Remove neutral O atom, electrons remain behind \Rightarrow V_O

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Formation of Neutral O Vacancy

Localised orbital on neutral oxygen vacancy

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 > ◆○ ◆

Charged O Vacancies

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Charged O Vacancies

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Native Point Defects

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• It is generally believed that native point defects in alumina have their full formal charges:

$$V^{2+}_O, \ \ O^{2-}_i, \ \ V^{3-}_{AI}, \ \ AI^{3+}_i.$$

- Defects in pure alumina can only form in charge neutral combinations:
 - Schottky (vacancies) and anti-Schottky (interstitials)

$$3V_{O}^{2+}+2V_{AI}^{3-} \qquad \text{and} \qquad 2AI_{i}^{3+}+3O_{i}^{2-}$$

• Cation Frenkel (Al³⁺ ions) and anion Frenkel (O²⁻ ions)

$$V^{3-}_{AI}+AI^{3+}_i \qquad \text{and} \qquad V^{2+}_O+O^{2-}_i$$

(日) (日) (日) (日) (日) (日) (日)

Ti_{Al}¹⁺ Substitutional

- Replace a neutral AI atom (including the three valence electrons it had donated to nearby O atoms) by a neutral Ti atom.
- The Ti atom immediately donates 3 valence electrons to fill the 3 holes in the *p* orbitals on nearby O atoms. The defect as a whole remains neutral.
- The remaining Ti valence electron is left in a bound state high in the gap, well above *E_F*.

(日) (日) (日) (日) (日) (日) (日)

- Because the gap is large, the system can lower its total energy by creating a negatively charged native defect and moving the 4th Ti valence electron to that.
- Ti_{AI} is a source of electrons, prompts the formation of negative defects, and increases E_F.

(ロ) (同) (三) (三) (三) (○) (○)

Mg¹⁻_{Al} Substitutional

- Replace a neutral AI atom (including the three valence electrons it had donated to nearby O atoms) by a neutral Mg atom.
- The Mg atom immediately donates its 2 valence electrons to fill 2 of the 3 holes in the *p* orbitals on nearby O atoms. The defect as a whole remains neutral.
- The remaining O p hole is left as a bound state above the bottom of the gap, below E_F.

- Because the gap is large, the system can lower its total energy by creating a positively charged native defect and allowing the electron released to fill the O p hole.
- Mg_{Al} is a source of holes, prompts the formation of positive defects, and decreases *E_F*.

(日) (日) (日) (日) (日) (日) (日)

• A substitutional impurity may bind to an intrinsic defect of opposite charge to form a defect cluster:

$$\begin{array}{rcl} \mathsf{Ti}_{\mathsf{AI}}^{1+} + \mathsf{V}_{\mathsf{AI}}^{3-} & \Leftrightarrow & (\mathsf{Ti}_{\mathsf{AI}}:\mathsf{V}_{\mathsf{AI}})^{2-} \\ \mathsf{Mg}_{\mathsf{AI}}^{1-} + \mathsf{V}_{\mathsf{O}}^{2+} & \Leftrightarrow & (\mathsf{Mg}_{\mathsf{AI}}:\mathsf{V}_{\mathsf{O}})^{1+} \end{array}$$

• Although the formation energies of such clusters are usually negative, configurational entropy wins and clusters dissociate at high enough *T*.

The Corundum Conundrum

Despite widespread industrial usage, defect phenomena in Al₂O₃ are not well understood or well controlled.

Diffusion experiments are our only experimental window to understanding, but low intrinsic concentrations, lack of a good radiotracer for AI, and unknown impurities content of samples limit interpretation of results.

Previous classical potential and DFT calculations produced formation energies very hard to reconcile with experimental $E_a \sim 6$ eV.

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

The Corundum Conundrum

Some clear facts emerge from experiments

- *D*_O is *smaller* than *D*_{AI} (or *D* for cation impurities) by several orders of magnitude.
- Rate-limiting D_{loop} sensitive to balance of aliovalent impurities. Up by \sim 100 with 250ppm Mg; down by \sim 50 60 with 600ppm Ti.
- However, given very low intrinsic native defect concentrations $\sim 10^{-10},$ these are remarkably small changes.

Could native defect concentrations somehow be "buffered" against doping? What role do defect clusters play? Can we predict diffusion coefficients *ab initio*?

Outline

1 Why?

2 Alumina and the Corundum Conundrum

3 Thermodynamics of Point Defects

4 Calculations

Equilibrium Conditions

- Work at constant T, P, N_{AI} , N_O , N_{Mg} , N_{Ti} .
- Equilibrium state minimises total Gibbs free energy

$$\textit{G} = \sum_{i}\textit{N}_{i}\textit{g}_{i} - \textit{TS}_{\mathsf{config}}$$

- *N_i* is number of formula units containing defects of type *i*. (Perfect formula unit included.)
- *g_i* is Gibbs energy of crystal of *N* formula units containing one defect of type *i* minus Gibbs energy of perfect crystal of *N* - 1 formula units. (Configurational entropy omitted.)
- Assumes dilute limit.
- Assumes every defect fits into a formula unit.

Configurational Entropy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$S_{\text{config}} = k_B \ln \frac{N! \prod_i m_i^{N_i}}{\prod_i N_i!}$$

- N is total number of formula units.
- *m_i* is multiplicity of sites and orientations of point defect *i* in a formula unit.

Optimization

Minimising

$$G = \sum_i N_i g_i - TS_{ ext{config}}$$

subject to

•
$$\sum_i N_i n_i^{AI} = N_{AI}$$

•
$$\sum_i N_i n_i^{Mg} = N_{Mg}$$

•
$$\sum_i N_i = N$$

yields ...

•
$$\sum_i N_i n_i^{\rm O} = N_{\rm O}$$

•
$$\sum_i N_i n_i^{\mathrm{Ti}} = N_{\mathrm{Ti}}$$

•
$$\sum_i N_i q_i = 0$$

・ロト・四ト・モート ヨー うへの

The Boltzmann Law

(日) (日) (日) (日) (日) (日) (日)

$$c_i = m_i \exp\left(-\frac{g_i - \mu_{\mathsf{AI}} n_i^{\mathsf{AI}} - \mu_{\mathsf{O}} n_i^{\mathsf{O}} - \mu_{\mathsf{Mg}} n_i^{\mathsf{Mg}} - \mu_{\mathsf{Ti}} n_i^{\mathsf{Ti}} + \mu_e q_i}{k_B T}\right)$$

- *c_i* is the concentration of defects of type *i*.
- The μ 's are Lagrange multipliers for the constraints.
- Sign of μ_e chosen to allow us to interpret it as a chemical potential *for electrons*.
- $\Delta g_i = g_i \mu_{AI} n_i^{AI} \mu_O n_i^O \mu_{Mg} n_i^{Mg} \mu_{Ti} n_i^{Ti} + \mu_e q_i$ is called the defect formation energy.
- Since density of perfect formula units is almost 1:

$$g_{\mathrm{Al_2O_3}} pprox 2\mu_{\mathrm{Al}} + 3\mu_{\mathrm{O}}$$

Outline

1 Why?

- 2 Alumina and the Corundum Conundrum
- 3 Thermodynamics of Point Defects
- 4 Calculations Procedure What Do We Need? Methods

The Grand Canonical Ensemble

(日) (日) (日) (日) (日) (日) (日)

Although we have been working in the canonical ensemble so far, we now change viewpoints and treat $\mu_{\rm O}$, $\mu_{\rm Al}$, $\mu_{\rm Mg}$, $\mu_{\rm Ti}$, and μ_e as *inputs*.

 Imagine that the solid is in equilibrium with O₂ gas at (partial) pressure P_{O2} and temperature T:

$$\mu_{\rm O} = \mu_{\frac{1}{2}{\rm O}_2}(P_{{\rm O}_2}, T)$$

- $\mu_{\rm Al}$ is then determined using $g_{\rm Al_2O_3} \approx 2\mu_{\rm Al} + 3\mu_{\rm O}$.
- g_{Al₂O₃} will be calculated.

Algorithm

(日) (日) (日) (日) (日) (日) (日)

- Choose $\mu_{\frac{1}{2}O_2}$ (and thus μ_O and μ_{AI}).
- Choose μ_e , μ_{Mg} and μ_{Ti} .
- Calculate defect formation energies:

 $\Delta g_i = g_i - \mu_{\mathsf{A}\mathsf{I}} n_i^{\mathsf{A}\mathsf{I}} - \mu_{\mathsf{O}} n_i^{\mathsf{O}} - \mu_{\mathsf{M}\mathsf{g}} n_i^{\mathsf{M}\mathsf{g}} - \mu_{\mathsf{T}\mathsf{i}} n_i^{\mathsf{T}\mathsf{i}} + \mu_e q_i$

Obtain defect concentrations from Boltzmann equation:

$$c_i = m_i \exp\left(-rac{\Delta g_i}{k_B T}
ight)$$

- Adjust μ_e until Q = 0.
- Adjust μ_{Mg} and μ_{Ti} to obtain required dopant concentrations.

What Do We Need?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The chemical potential of O₂ as a function of *T* and P_{O2}.
 The Gibbs energies per formula unit: g_i and g_{Al2O3}.

The Oxygen Chemical Potential

$$\mu_{\mathsf{O}_2} = (U + PV - TS)/N = E_{\mathsf{O}_2} + Pv - Ts$$

- The volume *v* and entropy *s* per molecule can be estimated using ideal gas formulae or obtained from thermodynamic tables.
- With a good quantum chemistry or QMC calculation, the total energy E_{O2} of an oxygen molecule could be obtained accurately enough to be useful.
- But not in DFT ...
- We use the Finnis-Lozovio-Alavi method to obtain values of μ_{O2}(P, T) that prove remarkably independent of pseudopotential or exchange-correlation functional.

Gibbs Energies of Solids

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- For solids, PV contribution to G = U + PV TS is negligible.
- In insulators, electronic excitation negligible. Obtain U_{el} from DFT or QMC ground-state total energy.
- Vibrational contributions to *U* and *TS* obtained from DFPT phonon calculations. Quantitatively but not qualitatively significant.

Ingredients

Aluminium metal: $E_T[Al(s)]$

Alumina perfect crystal: $E_T[Al_2O_3(s)]$

etc ...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Methods

Plane Wave DFT — CASTEP

Linear Scaling DFT — ONETEP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Diffusion Monte Carlo — CASINO

Methods

- Plane-wave DFT calculations
 - CASTEP
 - Vanderbilt USP cut-off 550 eV; TN-DF cut-off 3000 eV.
 - LDA and GGA.
- DMC calculations
 - CASINO
 - DFT geometries.
 - Determinant from DFT calculation.
- Cells and supercells
 - 1 \times 1 \times 1 hexagonal unit cell contains 30 atoms and 144 valence electrons.
 - The $2 \times 2 \times 1$ simulation cell used for the DMC simulations contains 120 atoms and 576 valence electrons.
 - $3 \times 3 \times 2$ DFT supercell contains 540 atoms and 2592 electrons.

Difficulties

(日) (日) (日) (日) (日) (日) (日)

- Localised states in gap ⇒ self-interaction and band-gap problems in DFT (but not QMC).
 - Fortunately, the most important defects are V_{AI}^{3-} and V_{O}^{2+} , which do not have occupied states in the gap.
- Charged defects \Rightarrow enormous finite-size errors.
 - Careful extrapolation to infinite dilution required.
 - We use Nick Hine's clever Madelung extrapolation procedure. [Phys. Rev. B **79**, 024112 (2009)]

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

1 Why?

- 2 Alumina and the Corundum Conundrum
- 3 Thermodynamics of Point Defects

4 Calculations

Results Benchmarks Defect Concentrations Diffusion Coefficients

Bulk Alumina in DMC

・ロット (雪) (日) (日)

3

DMC lattice parameter is good:

Energy gap much closer to experiment than DFT:

Method	Excitation Gap (eV)
LDA-USP	6.9
DMC	9.4(3)
Experiment	9.1

Formation Energies: DMC vs DFT

Previous DMC calculations of defects have suggested that DFT may overbind the solid.

Phys. Rev. Lett. **83**, 2351 (1999) Leung, Needs, Rajagopal, Itoh, Ihara. Calculations of Silicon Self-Interstitial Defects Phys. Rev. B **74**, 121102 (2006) Batista, ..., Martin, Umrigar et al Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects Interstitial formation energies 1-1.5eV higher in DMC than DFT.

Phys. Rev. Lett. **91**, 076403 (2003) Hood, Kent, Needs, Briddon Quantum Monte Carlo Study of the Optical and Diffusive Properties of the Vacancy Defect in Diamond Vacancy formation energy 1eV lower in DMC than DFT.

Bonds cost too much to break/form in DFT.

⇒ Vacancy formation energies overestimated Interstitial formation energies underestimated

Formation Energies: DMC vs DFT

$$\Delta g_i = g_i - \mu_{\mathsf{AI}} n_i^{\mathsf{AI}} - \mu_{\mathsf{O}} n_i^{\mathsf{O}} + \mu_{e} q_i$$

 $V_{\rm O}^0$ and $V_{\rm O}^{1+}$ (both of which have electrons in localised states on the defect site) are too difficult to form in DFT (self-interaction?). Error in $V_{\rm O}^{2+}$ formation energy is smaller.

Is DFT Good Enough?

(日) (日) (日) (日) (日) (日) (日)

The most important defects, V_O^{2+} , V_{AI}^{3-} , O_i^{2-} , Al_i^{3+} , all have full ionic charges and no occupied states in the gap. Errors in DFT formation energies $\leq 0.5 \text{ eV}$. ($k_B T = 0.15 \text{ eV}$ at 1750K).

We'll assume that DFT is good enough from now on.

Formation Energies

・ コット (雪) (小田) (コット 日)

 First step is to choose a *T* and calculate the formation energies of all possible contributing defects and clusters as functions of μ_e, μ_{Mg} and μ_{Ti}.

Most papers stop here — but no use to experimentalists yet ...

Next step is to use Boltzmann factor

$$m{c}_i = m{m}_i \exp\left(-rac{m{g}_i - \sum_lpha \mu_i^lpha m{n}_i^lpha + \mu_m{e}m{q}_i}{m{k_B}T}
ight)$$

to calculate concentrations of all defects as functions of $\mu_{\rm e},$ $\mu_{\rm Mg}$ and $\mu_{\rm Ti}.$

- Adjust μ_{Mg} and μ_{Ti} to obtain desired doping levels and μ_e to ensure charge neutrality.
- Dependence of concentrations on μ_e, μ_{Mg} and μ_{Ti} builds in a mean-field-like coupling between populations of different types of defects.

Self-Consistent Concentrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Concentrations of substitutionals with increasing doping.

Self-Consistent Concentrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Concentrations of substitutionals, vacancies and clusters.

Self-Consistent Concentrations

Concentrations of all significant defects, and Fermi level.

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへの

The Law of Mass Action

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Consider, for example, the reaction

$$(Mg_{AI}:V_O)^{1+} \Leftrightarrow Mg_{AI}^{1-}+V_O^{2+}$$

• Define $\Delta g_{\rm b}$ by

$$\Delta g_{(\mathrm{Mg}_{\mathrm{AI}}:\mathrm{V}_{\mathrm{O}})^{1+}} = \Delta g_{\mathrm{Mg}_{\mathrm{AI}}^{1-}} + \Delta g_{\mathrm{V}_{\mathrm{O}}^{2+}} + \Delta g_{\mathrm{b}}$$

Exponentiating gives

$$\exp\left(-\frac{\Delta g_{(Mg_{Al}:V_{O})^{1+}}}{k_{B}T}\right) = \exp\left(-\frac{\Delta g_{b}}{k_{B}T}\right)\exp\left(-\frac{\Delta g_{Mg_{Al}^{1-}} + \Delta g_{V_{O}^{2+}}}{k_{B}T}\right)$$

The Law of Mass Action

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\exp\left(-\frac{\Delta g_{(Mg_{AI}:V_{O})^{1+}}}{k_{B}T}\right) = \exp\left(-\frac{\Delta g_{b}}{k_{B}T}\right)\exp\left(-\frac{\Delta g_{Mg_{AI}^{1-}}+\Delta g_{V_{O}^{2+}}}{k_{B}T}\right)$$

This leads to the Law of Mass Action

$$[(Mg_{AI} : V_{O})^{1+}] = \frac{1}{k_{0}} \exp\left(-\frac{\Delta g_{b}}{k_{B}T}\right) [Mg_{AI}^{1-}][V_{O}^{2+}]$$

where k_0 is the ratio of multiplicities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Near zero doping, Fermi level adjusts itself such that $[V_O^{2+}]\approx 3[V_{AI}^{3-}]/2.$

 As [Mg¹⁻_{Al}] rises, Fermi level drops slightly, [V²⁺_O] rises slightly, and [V³⁻_{Al}] drops slightly, maintaining charge neutrality. (Rise is too small to see on the log scale of the graph.)

· According to the law of mass action,

$$[(Mg_{AI} : V_O)^{1+}] = K(T) [Mg_{AI}^{1-}][V_O^{2+}].$$

Increasing $[Mg_{AI}^{1-}]$ and $[V_O^{2+}]$ thus increases $[(Mg_{AI} : V_O)^{1+}]$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• At high enough doping, $[(Mg_{AI} : V_O)^{1+}]$ exceeds $[V_O^{2+}]$ and the further creation of V_O^{2+} defects is unnecessary.

▲□▶▲□▶▲□▶▲□▶ □ のQで

• The Fermi level settles down such that one new $(Mg_{AI} : V_O)^{1+}$ defect is formed for every Mg_{AI}^{1-} defect added.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- The V_O^{2+} and V_{Al}^{3-} concentrations are buffered and no longer change.

DFT Migration Barriers

Move atoms step by step from one possible site to an adjacent one

Constrain atom to series of planes perpendicular to vector joining start and end points.

Relax all atoms fully at each fraction along vector.

・ロト・西ト・西ト・西ト・日・ シック・

DFT Migration Barriers

・ロット (雪) (日) (日)

ъ

Migration barriers to site-to-site diffusion of oxygen vacancy

Different paths show very different barriers.

Lowest barriers $\sim 1 \text{eV}$ only permits movement around smaller triangles of O^{2-} ions. Real barrier to 3D diffusion is $\sim 1.73 \text{eV}$. Oxygen Vacancy Migration Barrier

DFT Migration Barriers

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Migration barriers to site-to-site diffusion of aluminium vacancy

Revealed an unexpected new configuration (of notably lower energy)

Split vacancy along *c*-axis.

3.5 Path 1 Path 2 3 Path 3 2.5-Path 4 Path 5 2 1.5-0.5 -0.5 -1 -0.1 0.2 0.3 0.4 0.7 0.8 0.9 0 0.5 0.6

Aluminium Vacancy Migration Barrier

Split Aluminium Vacancy

Can be thought of as 2 vacancies and 1 interstitial ...

A D > A P > A D > A D >

- 31

Split Aluminium Vacancy Migration

Moves in complex correlated motion of several atoms.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overall barrier is relatively low.

Migration Barriers

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Summary of migration barriers for intrinsic defect species:

Defect Species	$\Delta E_{\rm mig}~({\rm eV})$
V ₀ ²⁺	1.73
V_{Al}^{3-}	1.27
Al ³⁺	1.31
0 ²⁻	0.69
V ¹⁻ AlO	2.35

Reasonably in line with expectations of ceramicists (much lower than previous DFT estimates — which presumably did not find the fully relaxed path).

(日) (日) (日) (日) (日) (日) (日)

Diffusion coefficients D_i given by Arrhenius equation:

$$D_i = D_0 e^{-E_i^a/k_{\rm B}T}$$

where the activation energy E_i^a is the sum of the migration energy and the formation energy. Pre-exponential factor $D_0 \propto f \alpha^2 \nu$.

- *f*: correlation factor (calculate from structure)
- *α*: jump distance (estimate from bond lengths)
- *v*: attempt frequency (estimate from phonon frequencies)

Reliable Experimental Diffusion Measurements

イロト イポト イヨト イヨト

3

Loop annealing Data (Heuer), Al Tracer data (Fielitz)

Reciprocal Temperature (104/K)

Oxygen Diffusion Coefficients

▲□▶▲□▶▲□▶▲□▶ □ のQで

Calculated vs Experimental diffusion coefficients for V_{O}^{2+} .

Reciprocal Temperature (104/K)
Aluminium Diffusion Coefficients

▲□▶▲□▶▲□▶▲□▶ □ のQで

Calculated vs Experimental diffusion coefficients for V_{Al}^{3-} and $Al_i^{3+}.$

Reciprocal Temperature (104/K)

Conundrum Solved?

(ロ) (同) (三) (三) (三) (○) (○)

'Buffering' effect observed under aliovalent doping in oxygen and aluminium diffusion coefficient explained in terms of movement of Fermi level with changing ratios of concentrations of substitutionals relative to intrinsic defects and clusters.

Predicted and observed activation energies reconciled: good quantitative predictions of diffusion coefficients possible in ceramics.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Defects in insulators interest materials scientists and technologists.
- Existing electronic structure work is of mixed quality.
- Quantum thermodynamics is quite fun!
- Run into limits of DFT.
- Lots of results from a few accurate calculations ⇒ opportunities for QMC.