
Point Defects and Diffusion in α-Al2O3

N.D.M. Hine1,2,3 K. Frensch1,2,3 M.W. Finnis1,2,3

W.M.C. Foulkes1,3 A.H. Heuer3,4

1Department of Physics, 2Department of Materials, 3Thomas Young Centre
Imperial College London

4Department of Materials, Case Western Reserve University

International Conference on QMC in the Apuan Alps V, 2009



Outline

1 Why?

2 Alumina and the Corundum Conundrum

3 Thermodynamics of Point Defects

4 Calculations

5 Results



Outline

1 Why?

2 Alumina and the Corundum Conundrum

3 Thermodynamics of Point Defects

4 Calculations

5 Results



Why?

Al2O3

Ti/Fe doped Cr doped

Same mineral, different defects.



Why?

Alumina is the “prototypical” high-temperature ceramic.
Properties depend strongly on defects and their diffusion
coefficients.

• Electrical conductivity
• Grain growth
• Plastic deformation
• Oxide film growth
• Sintering and creep

• No transition metals
or rare earths!
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• Sintering and creep
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Why?

• Classical force fields often inadequate.
• Much existing QM work on defects in oxides is bad. (There

is good work on defects in semiconductors.)
• Published DFT formation energies of neutral oxygen

vacancy in alumina:
12.92 eV, 10.14 eV, 5.83 eV, 7.08 eV, 13.3 eV.

• Charged defects are even harder!

• Few existing QM studies have considered the
thermodynamics of defect formation/migration.

• Model for many other problems of technological and
scientific interest.



Why?

Solid Oxide Fuel Cells

• Electrolyte must conduct ions but not
electrons.

• ZrO2 (open structure).
• CeO2 (variable valence):

Ce4+ ⇔ Ce3+, CeO2 ⇔ Ce2O3.
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Crystal Structure

Complicated because of 2:3 coordination:

Supercell containing 2× 2× 1 copies of the hexagonal unit cell, with
120 atoms. Left: side view along the a axis. Right: top view down the
c axis.



Density of States



Bonding and Electrical Properties

• Mainly ionic (Al3+ and O2−).
• Clear from bandstructure.
• Born effective charges close to +3 and −2.

But with some covalent character.
• Point-charge and shell-model force fields do not work well.

• Wide band gap (∼9eV) insulator.
• High dielectric constant (∼9).



Point Defect Types

Defects in insulators may exist in various charge states.



Formation of Neutral O Vacancy

Perfect crystal



Formation of Neutral O Vacancy

Remove neutral O atom, electrons remain behind⇒ VO



Formation of Neutral O Vacancy

Localised orbital on neutral oxygen vacancy



Charged O Vacancies

Remove one localised electron⇒ V+
O



Charged O Vacancies

Remove both localised electrons⇒ V2+
O



Native Point Defects

• It is generally believed that native point defects in alumina have
their full formal charges:

V2+
O , O2−

i , V3−
Al , Al3+

i .

• Defects in pure alumina can only form in charge neutral
combinations:

• Schottky (vacancies) and anti-Schottky (interstitials)

3V2+
O + 2V3−

Al and 2Al3+
i + 3O2−

i

• Cation Frenkel (Al3+ ions) and anion Frenkel (O2− ions)

V3−
Al + Al3+

i and V2+
O + O2−

i



Aliovalent Substitutional Defects

Ti1+
Al Substitutional

• Replace a neutral Al atom (including the three valence
electrons it had donated to nearby O atoms) by a neutral Ti
atom.

• The Ti atom immediately donates 3 valence electrons to fill
the 3 holes in the p orbitals on nearby O atoms. The defect
as a whole remains neutral.

• The remaining Ti valence electron is left in a bound state
high in the gap, well above EF .



Aliovalent Substitutional Defects

• Because the gap is large, the system can lower its total
energy by creating a negatively charged native defect and
moving the 4th Ti valence electron to that.

• TiAl is a source of electrons, prompts the formation of
negative defects, and increases EF .
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Aliovalent Substitutional Defects

Mg1−
Al Substitutional

• Replace a neutral Al atom (including the three valence
electrons it had donated to nearby O atoms) by a neutral
Mg atom.

• The Mg atom immediately donates its 2 valence electrons
to fill 2 of the 3 holes in the p orbitals on nearby O atoms.
The defect as a whole remains neutral.

• The remaining O p hole is left as a bound state above the
bottom of the gap, below EF .



Aliovalent Substitutional Defects

• Because the gap is large, the system can lower its total
energy by creating a positively charged native defect and
allowing the electron released to fill the O p hole.

• MgAl is a source of holes, prompts the formation of positive
defects, and decreases EF .
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Defect Clusters

• A substitutional impurity may bind to an intrinsic defect of
opposite charge to form a defect cluster:

Ti1+
Al + V3−

Al ⇔ (TiAl : VAl)
2−

Mg1−
Al + V2+

O ⇔ (MgAl : VO)1+

• Although the formation energies of such clusters are
usually negative, configurational entropy wins and clusters
dissociate at high enough T .



The Corundum Conundrum

Despite widespread industrial usage,
defect phenomena in Al2O3 are not
well understood or well controlled.

Diffusion experiments are our only
experimental window to
understanding, but low intrinsic
concentrations, lack of a good
radiotracer for Al, and unknown
impurities content of samples limit
interpretation of results.

Previous classical potential and DFT
calculations produced formation
energies very hard to reconcile with
experimental Ea ∼ 6eV.



The Corundum Conundrum

Some clear facts emerge from experiments

• DO is smaller than DAl (or D for cation impurities) by
several orders of magnitude.

• Rate-limiting Dloop sensitive to balance of aliovalent
impurities. Up by ∼ 100 with 250ppm Mg; down by
∼ 50− 60 with 600ppm Ti.

• However, given very low intrinsic native defect
concentrations ∼ 10−10, these are remarkably small
changes.

Could native defect concentrations somehow be “buffered”
against doping? What role do defect clusters play? Can we
predict diffusion coefficients ab initio?



Outline

1 Why?

2 Alumina and the Corundum Conundrum

3 Thermodynamics of Point Defects

4 Calculations

5 Results



Equilibrium Conditions

• Work at constant T , P, NAl, NO, NMg, NTi.
• Equilibrium state minimises total Gibbs free energy

G =
∑

i

Nigi − TSconfig

• Ni is number of formula units containing defects of type i .
(Perfect formula unit included.)

• gi is Gibbs energy of crystal of N formula units containing
one defect of type i minus Gibbs energy of perfect crystal of
N − 1 formula units. (Configurational entropy omitted.)

• Assumes dilute limit.
• Assumes every defect fits into a formula unit.



Configurational Entropy

Sconfig = kB ln
N!
∏

i mNi
i∏

i Ni !

• N is total number of formula units.
• mi is multiplicity of sites and orientations of point defect i in

a formula unit.



Optimization

Minimising
G =

∑
i

Nigi − TSconfig

subject to

•
∑

i NinAl
i = NAl

•
∑

i Nin
Mg
i = NMg

•
∑

i Ni = N

•
∑

i NinO
i = NO

•
∑

i NinTi
i = NTi

•
∑

i Niqi = 0

yields . . .



The Boltzmann Law

ci = mi exp

(
−

gi − µAlnAl
i − µOnO

i − µMgnMg
i − µTinTi

i + µeqi

kBT

)

• ci is the concentration of defects of type i .
• The µ’s are Lagrange multipliers for the constraints.
• Sign of µe chosen to allow us to interpret it as a chemical

potential for electrons.
• ∆gi = gi − µAlnAl

i − µOnO
i − µMgnMg

i − µTinTi
i + µeqi is called

the defect formation energy.
• Since density of perfect formula units is almost 1:

gAl2O3 ≈ 2µAl + 3µO
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The Grand Canonical Ensemble

Although we have been working in the canonical ensemble so
far, we now change viewpoints and treat µO, µAl, µMg, µTi, and
µe as inputs.

• Imagine that the solid is in equilibrium with O2 gas at
(partial) pressure PO2 and temperature T :

µO = µ 1
2 O2

(PO2 ,T )

• µAl is then determined using gAl2O3 ≈ 2µAl + 3µO.
• gAl2O3 will be calculated.



Algorithm

• Choose µ 1
2 O2

(and thus µO and µAl).

• Choose µe, µMg and µTi.
• Calculate defect formation energies:

∆gi = gi − µAlnAl
i − µOnO

i − µMgnMg
i − µTinTi

i + µeqi

• Obtain defect concentrations from Boltzmann equation:

ci = mi exp
(
− ∆gi

kBT

)
• Adjust µe until Q = 0.
• Adjust µMg and µTi to obtain required dopant

concentrations.



What Do We Need?

1 The chemical potential of O2 as a function of T and PO2 .
2 The Gibbs energies per formula unit: gi and gAl2O3 .



The Oxygen Chemical Potential

µO2 = (U + PV − TS)/N = EO2 + Pv − Ts

• The volume v and entropy s per molecule can be
estimated using ideal gas formulae or obtained from
thermodynamic tables.

• With a good quantum chemistry or QMC calculation, the
total energy EO2 of an oxygen molecule could be obtained
accurately enough to be useful.

• But not in DFT . . .

• We use the Finnis-Lozovio-Alavi method to obtain values
of µO2(P,T ) that prove remarkably independent of
pseudopotential or exchange-correlation functional.



Gibbs Energies of Solids

• For solids, PV contribution to G = U + PV − TS is
negligible.

• In insulators, electronic excitation negligible. Obtain Uel
from DFT or QMC ground-state total energy.

• Vibrational contributions to U and TS obtained from DFPT
phonon calculations. Quantitatively but not qualitatively
significant.



Ingredients

Oxygen molecule: ET [O2(g)] Aluminium metal: ET [Al(s)] Alumina perfect crystal: ET [Al2O3(s)]

Aluminium vacancy: Edef
T [Vq

Al] Aluminium interstitial: Edef
T [AlqI ] etc ...



Methods

Plane Wave DFT — CASTEP Linear Scaling DFT — ONETEP

Diffusion Monte Carlo — CASINO



Methods

• Plane-wave DFT calculations
• CASTEP
• Vanderbilt USP cut-off 550 eV; TN-DF cut-off 3000 eV.
• LDA and GGA.

• DMC calculations
• CASINO
• DFT geometries.
• Determinant from DFT calculation.

• Cells and supercells
• 1× 1× 1 hexagonal unit cell contains 30 atoms and 144

valence electrons.
• The 2× 2× 1 simulation cell used for the DMC simulations

contains 120 atoms and 576 valence electrons.
• 3× 3× 2 DFT supercell contains 540 atoms and 2592

electrons.



Difficulties

• Localised states in gap⇒ self-interaction and band-gap
problems in DFT (but not QMC).

• Fortunately, the most important defects are V 3−
Al and V 2+

O ,
which do not have occupied states in the gap.

• Charged defects⇒ enormous finite-size errors.
• Careful extrapolation to infinite dilution required.
• We use Nick Hine’s clever Madelung extrapolation

procedure. [Phys. Rev. B 79, 024112 (2009)]
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Bulk Alumina in DMC

DMC lattice parameter is good:

Energy gap much closer to experiment than DFT:

Method Excitation Gap (eV)
LDA-USP 6.9

DMC 9.4(3)
Experiment 9.1



Formation Energies: DMC vs DFT

Previous DMC calculations of defects have suggested that DFT
may overbind the solid.

Phys. Rev. Lett. 83, 2351 (1999) Leung, Needs, Rajagopal, Itoh, Ihara.
Calculations of Silicon Self-Interstitial Defects
Phys. Rev. B 74, 121102 (2006) Batista, . . . , Martin, Umrigar et al
Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of
silicon phases and defects
Interstitial formation energies 1-1.5eV higher in DMC than DFT.

Phys. Rev. Lett. 91, 076403 (2003) Hood, Kent, Needs, Briddon
Quantum Monte Carlo Study of the Optical and Diffusive Properties of the Vacancy Defect in Diamond
Vacancy formation energy 1eV lower in DMC than DFT.

Bonds cost too much to break/form in DFT.

⇒ Vacancy formation energies overestimated
Interstitial formation energies underestimated



Formation Energies: DMC vs DFT

∆gi = gi − µAlnAl
i − µOnO

i + µeqi

V 0
O and V 1+

O (both of which have electrons in localised states on
the defect site) are too difficult to form in DFT
(self-interaction?). Error in V2+

O formation energy is smaller.



Is DFT Good Enough?

The most important defects, V2+
O , V3−

Al , O2−
i , Al3+

i , all have full
ionic charges and no occupied states in the gap. Errors in DFT
formation energies ≤ 0.5 eV. (kBT = 0.15 eV at 1750K).

We’ll assume that DFT is good enough from now on.



Formation Energies

• First step is to choose a T and calculate the formation
energies of all possible contributing defects and clusters as
functions of µe, µMg and µTi .

Most papers stop here — but no use to experimentalists
yet ...



Self-Consistent Concentrations

• Next step is to use Boltzmann factor

ci = mi exp
(
−

gi −
∑

α µ
α
i nαi + µeqi

kBT

)
to calculate concentrations of all defects as functions of µe,
µMg and µTi.

• Adjust µMg and µTi to obtain desired doping levels and µe
to ensure charge neutrality.

• Dependence of concentrations on µe, µMg and µTi builds in
a mean-field-like coupling between populations of different
types of defects.



Self-Consistent Concentrations

Concentrations of substitutionals with increasing doping.



Self-Consistent Concentrations

Concentrations of substitutionals, vacancies and clusters.



Self-Consistent Concentrations

Concentrations of all significant defects, and Fermi level.



The Law of Mass Action

• Consider, for example, the reaction

(MgAl : VO)1+ ⇔ Mg1−
Al + V2+

O

• Define ∆gb by

∆g(MgAl:VO)1+ = ∆gMg1−
Al

+ ∆gV2+
O

+ ∆gb

• Exponentiating gives

exp
(
−

∆g(MgAl:VO)1+

kBT

)
= exp

(
−∆gb

kBT

)
exp

(
−

∆gMg1−
Al

+ ∆gV2+
O

kBT

)



The Law of Mass Action

exp
(
−

∆g(MgAl:VO)1+

kBT

)
= exp

(
−∆gb

kBT

)
exp

(
−

∆gMg1−
Al

+ ∆gV2+
O

kBT

)

• This leads to the Law of Mass Action

[(MgAl : VO)1+] =
1
k0

exp
(
−∆gb

kBT

)
[Mg1−

Al ][V2+
O ]

where k0 is the ratio of multiplicities.



Buffering Explained

• Near zero doping, Fermi level adjusts itself such that
[V2+

O ] ≈ 3[V3−
Al ]/2.



Buffering Explained

• As [Mg1−
Al ] rises, Fermi level drops slightly, [V2+

O ] rises slightly,
and [V3−

Al ] drops slightly, maintaining charge neutrality. (Rise is
too small to see on the log scale of the graph.)



Buffering Explained

• According to the law of mass action,

[(MgAl : VO)1+] = K (T ) [Mg1−
Al ][V2+

O ] .

Increasing [Mg1−
Al ] and [V2+

O ] thus increases [(MgAl : VO)1+].



Buffering Explained

• At high enough doping, [(MgAl : VO)1+] exceeds [V2+
O ] and the

further creation of V2+
O defects is unnecessary.



Buffering Explained

• The Fermi level settles down such that one new (MgAl : VO)1+

defect is formed for every Mg1−
Al defect added.



Buffering Explained

• The V2+
O and V3−

Al concentrations are buffered and no longer
change.



DFT Migration Barriers

Move atoms step by step
from one possible site to an
adjacent one

Constrain atom to series of
planes perpendicular to
vector joining start and end
points.

Relax all atoms fully at each
fraction along vector.



DFT Migration Barriers

Migration barriers to
site-to-site diffusion of
oxygen vacancy

Different paths show
very different barriers.

Lowest barriers ∼ 1eV
only permits movement
around smaller
triangles of O2− ions.
Real barrier to 3D
diffusion is ∼ 1.73eV.



DFT Migration Barriers

Migration barriers to
site-to-site diffusion of
aluminium vacancy

Revealed an
unexpected new
configuration (of
notably lower energy)

Split vacancy along
c-axis.



Split Aluminium Vacancy

Can be thought of as 2 vacancies and 1 interstitial ...



Split Aluminium Vacancy Migration

Moves in complex correlated motion of several atoms.

Overall barrier is relatively low.



Migration Barriers

Summary of migration barriers for intrinsic defect species:

Defect Species ∆Emig (eV)
V2+

O 1.73
V3−

Al 1.27
Al3+

i 1.31
O2−

i 0.69
V1−

AlO 2.35

Reasonably in line with expectations of ceramicists (much lower
than previous DFT estimates — which presumably did not find
the fully relaxed path).



Calculating Diffusion Coefficients

Diffusion coefficients Di given by Arrhenius equation:

Di = D0e−Ea
i /kBT

where the activation energy Ea
i is the sum of the migration

energy and the formation energy.
Pre-exponential factor D0 ∝ fα2ν.

• f : correlation factor (calculate from structure)
• α: jump distance (estimate from bond lengths)
• ν: attempt frequency (estimate from phonon frequencies)



Reliable Experimental Diffusion Measurements

Loop annealing Data (Heuer), Al Tracer data (Fielitz)



Oxygen Diffusion Coefficients

Calculated vs Experimental diffusion coefficients for V2+
O .



Aluminium Diffusion Coefficients

Calculated vs Experimental diffusion coefficients for V3−
Al and

Al3+
i .



Conundrum Solved?

‘Buffering’ effect observed under aliovalent doping in oxygen
and aluminium diffusion coefficient explained in terms of
movement of Fermi level with changing ratios of concentrations
of substitutionals relative to intrinsic defects and clusters.

Predicted and observed activation energies reconciled: good
quantitative predictions of diffusion coefficients possible in
ceramics.



Conclusions

• Defects in insulators interest materials scientists and
technologists.

• Existing electronic structure work is of mixed quality.
• Quantum thermodynamics is quite fun!
• Run into limits of DFT.
• Lots of results from a few accurate calculations⇒

opportunities for QMC.
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