

Some developments in QMC for solids

QMC in the Apuan Alps July 27, 2009

Ken Esler, Jeongnim Kim, R.E. Cohen, Luke Shulenburger, David Ceperley

Outline

• All-electron vs. PP calculations in solids - Pseudopotential discrepancies - All-electron simulation in solids - Combining AE and PP data Mixed-basis representation for orbitals Storage bottlenecks - Older approaches Mixed-basis representation QMC simulations on GPUs Intro to GPU computing – QMCPACK on GPUs in Apuan Alps 2009

Pseudopotentials

- QMC is only as good as the Hamiltonian
 Early days: all-electron for small molecules
 - Pseudopotentials grudgingly adopted later
 - Very good work in constructing PPs for DFT and QMC
 - DFT has good ways to evaluate PPs
 - All-electron calculations for small systems verify transferability
- Can we do the same for QMC?

Pseudopotential bias Example: EOS of c-BN

- 3 PPs give 3 different equations of state
- HF vs. DFT does not appear to be the difference

۲

- No a priori way to know which is the "best"
- PPs were each constructed well, but with different theory.
- Can we do better?

Pseudopotential bias

- 3 PPs give 3 different equations of state
- HF vs. DFT does not appear to be the difference
- No a priori way to know which is the "best"
- PPs were each constructed well, but with different theory.
 - Can we do better?

All-electron QMC for solids

- In DFT, we test transferability against LAPW or PAW calculations
- Can we do the same in QMC?
 - Expensive?
 - Not too bad for first-row solids
 - Still too expensive to large supercells
 - Combine PP data with AE data?
 - Where do we get our trial wave functions?

AE QMC for solids: LAPW methodology

Inside the "muffin tins", orbitals are expanded in spherical harmonics

$$\phi_{\mathrm{MT}}^{n\mathbf{k}\alpha}(r) = \sum_{\ell=0}^{\ell_{\mathrm{max}}} \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\hat{\Omega}) \sum_{G} c_{\mathbf{G}}^{n\mathbf{k}} \sum_{j=1}^{M_{\ell}^{\alpha}} A_{j\ell m}^{\alpha}(\mathbf{G}+\mathbf{k}) f_{j\ell}^{\alpha}(r)$$

• Outside, use plane-waves

$$\phi_{
m int.}^{n{f k}} = \sum_{f G} c_G^{n{f k}} e^{i{f k}\cdot{f r}}$$

PWs and Y^m_Is are matched at MT boundary

- LAPW order, M, gives the order of matching
 - Order 1 matches value only (allows "kinks")
 - Order 2 gives smooth matching
 - Matching only exact as $\ell_{\max} \to \infty$

AE QMC for solids: QMC methodology

Do sums over G and j offline:

$$\phi_{\mathrm{MT}}^{n\mathbf{k}\alpha}(r) = \sum_{\ell,m} u_{\ell m}^{n\mathbf{k}\alpha} \left(|\mathbf{r} - \mathbf{I}_{\alpha}| \right) Y_{\ell}^{m} \left(\hat{\Omega} \right)$$
$$u_{\ell m}^{n\mathbf{k}\alpha}(r) = \sum_{G} c_{\mathbf{G}}^{n\mathbf{k}} \sum_{j=1}^{M_{\ell}^{\alpha}} A_{j\ell m}^{\alpha}(\mathbf{G} + \mathbf{k}) f_{j\ell}^{\alpha}(r)$$

- Use super-LAPW (M=2) to ensure WF is smooth
- Use Imax = ~10 for good continuity!
- Optionally use blending function to ensure variational WF
- Represent u_{im} as 1D splines (expect near origin)
- Evaluate all splines at once for efficiency
- Use 3D B-splines (BLIPS) for interstitial region

AE QMC for solids: Practical details

- Modified EXCITING (now Elk) FP-LAPW code
 - Remove relativistic corrections
 - Export orbitals in HDF5 format
- Requires smaller time-step than PP calculations
- Too expensive to do large supercell
- Can we combine AE simulation with PP data?

 Yes, but only if the cell is big enough that core states do not contribute to the finite-size errors

$$E = E_{64}^{\rm PP} + \left[E_8^{\rm AE} - E_8^{\rm PP} \right]$$

Core bands are flat: no momentum quantization error
Periodicity of exchange-correlation hole?

Combining AE and PP data

Combining AE and PP data: Results

- Once AE correction is applied, data from 3 PPs come into agreement
- Corrected EOS gives good agreement with experiment at low pressure

Mixed basis representation for orbitals 3D cubic B-spline basis (blips)

- Local basis from piecewise continuous, smooth polynomials
- Functions centered on grid points
- Strictly local: only 4 nonzero elements at any point in 1D

- Generalize to 3D with tensor product of 1D functions
 - 64 nonzero elements at any point in space
 - Very fast to evaluate
- Store 1 coefficient per grid point
- Required grid spacing determined by hardness of PPs
- Storage goes as N²
- May have insufficient RAM for otherwise doable problems

Previous solutions to the storage problem

- Share the orbitals on an SMP node
 - Allows 8-16 GB on current clusters
 - Can get to fairly large systems for perfect crystals
 - Disordered systems require more storage
 - e.g. 32 water molecules = 11 GB
 - In QMCPACK and in latest CASINO

- Distribute the orbitals with MPI
 - Requires frequent small messages
 - Can impose a performance penalty

Previous solutions to the storage problem: Nonuniform splines

- Short-wavelength oscillations are only around ions
- First, localize the orbitals around the ions
 - Alfe and Gillan
 - Reboredo and Williamson
- Use nonuniform B-spline with basis concentrated around ions
- Nonuniform error much smaller for the same number of points

QMC in Apuan Alps 2009

Previous solutions to the storage problem: Nonuniform splines

- Appears to work for systems that can be welllocalized
- Each localized orbital has a different center
- Cannot amortize the basis function cost
- Band index cannot be fastest index in memory
- Slower to evaluate that uniform, extended Bsplines

Mixed-basis representation

- Use same form inside muffin tins as with LAPW orbitals
- Projection onto spherical harmonics can be done analytically:

$$u_{\ell m}^{n\mathbf{k}\alpha}(r) = 4\pi i^{\ell} \sum_{\mathbf{G}} c_{\mathbf{G}}^{n\mathbf{k}} e^{-i(\mathbf{G}+\mathbf{k})\cdot\mathbf{I}} j_{\ell} \left(r|\mathbf{G}+\mathbf{k}|\right) \left[Y_{\ell}^{m}(\mathbf{G}+\mathbf{k})\right]^{*}$$

- Must choose radii and I_{max}
- For FeO, use I_{max}=5
 - Yields 144 coefficients reads per evaluation
 - More than 3D B-spline (64),
 - Radial splines only evaluated once per PP quadrature
 - Runs at about the same speed as standard approach
 QMC in Approach

Mixed basis representation: FeO example

- Near ions:
 - 3D splines handle function value well,
 - but not the Laplacian.
 - Laplacian is continuous, but not smooth.
 - Atomic orbitals handle both well with a fine 1D grid

Mixed basis representation: FeO example

- Near ions:
 - 3D splines handle function value well,
 - but not the Laplacian
 - Laplacian is continuous, but not smooth
 - Atomic orbitals handle both well with a fine 1D grid

Mixed basis representation: Energy

- DMC energy
 - 3D B-spline okay down to ~60 points per dir.
- DMC variance
 - Always lower for hybrid representation
 - Many times lower for very coarse grids

Mixed basis representation: Variance

- DMC energy
 - 3D B-spline okay down to ~60 points per dir.
- DMC variance
 - Always lower for hybrid representation
 - Many times lower for very coarse grids

Mixed basis representation: Variance ratio

- DMC energy
 - 3D B-spline okay down to ~60 points per dir.
- DMC variance
 - Always lower for hybrid representation
 - Many times lower for very coarse grids

Mixed basis representation: Time step error

- Lower variance of local energy also gives smaller time step error
- Hybrid representation with coarse mesh gives lower time step error than
 B-spline only with fine mesh

Mixed basis summary

- With mixed basis, we appear to get the same dt->0 answer, in about the same time, with lower variance, with about 1/8 the memory requirement
- Very effective for hard PPs (e.g. those with semicore states)
- Not as effective with light, molecular systems (e.g. water)

QMC using graphics processors (GPUs)

Why are GPU's interesting?

CPU

- 40-60 GFLOPS DP
- 80-120 GFLOPS SP
- 10-30 GB/s memory bandwidth
- Optimized for singlethread performance

- GPU
 - 85 GFLOPS DP
 - 1 TFLOP SP
 - 100-150 GB/s memory bandwidth
 - Technology on steeper trajectory than CPUs
 - Optimized for throughput

Why are GPU's interesting?

CPU

- Hide memory latency with large cache
- A lot of logic for:
 - Instruction reorder
 - Branch prediction
 - Prefetching
- Relatively few FPUs

• GPU

- Hide memory latency through simultaneous multithreading (SMT)
- In-order execution little control logic
- Many more FPUs
- Very wide memory bus (e.g. 512 bit)

Market drivers

GAMES!

- Gamers buy a new card each year
- Always want better performance
- FLOPS/Bandwidth makes better graphics
- Game designers want flexibility of GPGPU

Media

- Content producers using GPUs
- E.g. Adobe CS4
- Finance
- Medical

• Oil

HPC for science

NVIDIA G200

1.4 billion transistors

Intel Quad Core Nehalem

 731 million transistors
 -- 8 MB L3 plus
 4 x 256 kB L2
 -- 3x64bit DDR3 bus

 2x Quick path I/O
 -- Single core size: ~24.4 mm2 (excl L2)

 L2 cache tiles: 7.1 mm2 / MB,
 L3 cache tiles: 5.7 mm2 / MB
 (excl tags)

AMD Quad Core Shanghai

-705 million transistors --- 6 MB L3 plus 4 x 512 kB L2 --- 128 bit DDR2/3 bus 4x HyperTransport I/O --- Single core size; -15.3 mm2 (excl L2) L2 cache tiles; 7.5 mm2 / MB, L3 cache tiles; 7.5 mm2 / MB (excl.tags) Die size 243 mm2 (incl. test circ.263 mm2) HyperTransport O HyperTransport O G MB-L3 CPU kB L2 kB L2 CPU kB L2 kB L2 CPU core 0 Core 0

www.chip-architect.com --- Rev.2 March-17, 2008

And now for something completely different...

- GPU architecture
 - Is it a vector processor?
 - Or is it a barrel processor?
 - Or is it a multicore processor?
- YES!

Barrel processors

- Alternative solution to memory latency problem
- Send many independent threads to processor
- Processor executes instructions in a thread sequentially until it blocks
- Whenever a thread blocks, move on to the next thread
- With enough threads in the barrel, memory latency can be completely hidden
- Requires many independent tasks which can run in parallel

Vector processors

- Execution logic is expensive
- Perform the same instruction on multiple data (SIMD)
- x86 has short vector instructions (SSE)
 4 for single prec.; 2 for double precision
 - GPU variation: SIMT
 - Each thread has its own data
 - Each thread executes same inst., but writing result can be masked with conditionals
 - Vector length is variable, but multiple of 32

Multicore processors

- GPUs are separated into independent units
 - Data can be exchanged on the same unit for a given kernel (shared memory)
 - Data can be exchanged between units through DRAM
 - Data can be exchanged with CPU through API calls (slow!)
 - NVIDIA G200: 30 processor cores
- Need hundreds of independent threads to keep GPU busy

GPU memory bandwidth

- NVIDIA Tesla: 100 GB/s
- AMD 4870: 115 GB/s
- How?
 - Very fast DRAM (GDDR3-GDDR5)
 - Very wide bus (256-512 bits)
- Requires very wide, aligned reads
 - Read 16 floats or 8 doubles at time
 - Reads must be sequential and 64-byte aligned

GPU programming

- "Host" (CPU) does I/O, complicated processing, etc.
- GPU executes "kernels": small functions to do one task many times
 - Limited number of registers and shared memory
 - All cores execute the same kernel
 - Single precision is very fast
 - Double precision is faster than CPU, but much slower than single precision
- Data is passed between CPU and GPU memory across PCI bus with API calls
 - Currently 1.5 8 GB/s: SLOW!

CUDA

- NVIDIA's extensions to C/C++ to allow GPU execution
- Mix CPU and GPU code in the same file
- A few language extensions for device code
- A few API calls for memory allocation, data transfer, etc.
- Challenges:
 - Debugging: sychronoization bugs, no "printf" on GPU!
 - Memory layout and access patterns!
 - Pointer book-keeping
 - Exposing parallelism
- Very good forum (CUDA zone)

```
global void
two body sum kernel
(float R[], int e1 first, int e1 last, int e2 first, int e2 last, float spline coefs[],
int numCoefs, float rMax, float lattice[], float latticeInv[], float sum[])
 int N1 = e1 last - e1 first + 1;
 int N2 = e^2 last - e^2 first + 1;
 int NB1 = (N1+BS-1)//BS;
 int NB2 = (N2+BS-1)/BS;
 float mysum = (float)0.0;
 for (int b1=0; b1 < NB1; b1++) {
  // Load block of positions from global memory
  for (int i=0; i<3; i++)
   if ((3*b1+i)*BS + tid < 3*N1)
     r1[0][i*BS + tid] = myR[3*e1 first + (3*b1+i)*BS + tid];
     syncthreads():
  int ptcl1 = e1 first+b1*BS + tid;
  for (int b2=0; b2 < NB2; b2++) {
   for (int i=0: i<3: i++)
     if ((3*b2+i)*BS + tid < 3*N2)
       r2[0][i*BS + tid] = myR[3*e2 first + (3*b2+i)*BS + tid];
      syncthreads();
   // Now, loop over particles
   int end = (b2+1)*BS < N2 ? BS : N2-b2*BS;
   for (int j=0; j<end; j++) {
     int ptcl2 = e2 first + b2*BS+j;
     float dx, dy, dz;
     dx = r2[j][0] - r1[tid][0];
     dy = r2[j][1] - r1[tid][1];
     dz = r2[j][2] - r1[tid][2];
     float dist = min dist(dx, dy, dz, L, Linv);
     if (ptcl1 != ptcl2 && (ptcl1 < (N1+e1 first) ) && (ptcl2 < (N2+e2 first)))
       mysum += eval 1d spline (dist, rMax, drInv, A, coefs);
```

Sum result over threads

```
__shared__float shared_sum[BS];
shared_sum[tid] = mysum;
__syncthreads();
for (int s=BS>>1; s>0; s >>=1) {
    if (tid < s)
        shared_sum[tid] += shared_sum[tid+s];
    _syncthreads();
```

// Avoid double-counting

float factor = (e1_first == e2_first) ? 0.5 : 1.0; if (tid==0) sum[blockIdx.x] += factor*shared_sum[0];

synchthreads();

QMCPACK

- Developed at UIUC
 - Principal developer:
 - Jeongnim Kim¹
- C++ code with extensive template optimizations
- Hybrid OpenMP/MPI parallelization model
- Uses XML and HDF5 standards
- Object-oriented design for extensibility
- Open source and freely available

- Orbitals
 - Gaussian, STOs, PW,
 B-spline, mixed-basis,
 LAPW
 - Real or complex WFs
- VMC, DMC, and RMC
- Standard variance and energy opt. methods
- Scaled to 100k cores
- Works with ABINIT, Pwscf, Qbox, Gaussian, etc.

QMC on a GPU

- Advantages:
 - Walkers provide plenty of work for a GPU kernel
- Challenges:
 - Orbital storage: orbitals must fit in 4 GB GPU memory.
 Distribution on multiple cards could be expensive.
 - Many kernels
 - Orbital evaluation
 - Determinant evaluation, ratios, and update
 - Jastrow evaluation and ratios
 - Coulomb interaction, Ewald sums
 - Pseudopotential ratios
 - Other observables

QMCPACK on GPU

- Reimplemented VMC & DMC drivers to be walker-parallel, but still particle by particle
- Implemented walker-parallel kernels for:
 - B-spline orbital evaluation
 - Determinant updates, ratios, inverses, gradients, laplacians, etc.
 - One-body and two-body B-spline Jastrows
 - Periodic coulomb interaction
 - Nonlocal pseudopotentials
- Single precision for everything but occasional inverse recomputation
- Use texture units for 1D potential interpolation
- Keep all walker-related data in GPU memory
- CPU proposes, accepts/rejects moves; branches; collects averages and does I/O.
 OMC in Apuan Alps 2009

Test: 64-atom diamond

- 64-atom DMC simulation of diamond
- Burkaztki et al. PP
- LDA orbitals
- 1+2-body Jastrow
 Optimized on CPU
- dt=0.01/Hartree
- Simple EOS calculation
 - No phonons
 - No finite-size corrections

- CPU and GPU give same results within statistical error
- GPU uses single precision for all but recomputing inverse

- CPU and GPU give same results within statistical error
- GPU uses single precision for all but recomputing inverse

- CPU and GPU give same results within statistical error
- GPU uses single precision for all but recomputing inverse

- CPU and GPU give same results within statistical error
- GPU uses single precision for all but recomputing inverse

CPU vs. GPU: Speed

• CPU run

- Cray XT5 (Kraken)
- 3072 Opteron cores
- 1280 walkers per V
- Double precision
- Block time:
 - 21.0 seconds

- CPU + GPU run
 - Dell cluster (Lincoln)
 - 48 G200 GPUs(+48 Xeon cores)
 - 1280 walkers per V
 - Mixed precision
 - Block time:
 - 24.4 seconds

1 G200 GPU = ~14 quad-core Opterons

CPU vs. GPU: Speed

- 32-atom MnO simulation
- We need many walkers per GPU to saturate speed
- May run out of GPU memory first
- May require long wall clock time

GPU kernel breakdown

Future work

- WF optimization

 Derivatives w.r.t.
 WF parameters

 Larger systems?
 Generalize

 Nonperiodic BC
- More WFs
 - Hybrid orbitals
 - Atomic bases
 - 3-body Jastrows
 - Multideterminant?
- More estimators
 MPC
 Pair correlation

Future speculation

NVIDIA

- Continue to support CUDA/OpenCL
- Next gen. (GT300)
 - Due 4th quarter
 - About 2.5x faster?
 - Faster double precision
- FORTRAN
 - PGI GPU extensions

AMD

- OpenCL out soon
- Next gen (RV870)
 - Due October?
 - 2.1 TFLOPS (SP)

Future speculation: Intel Larrabee

- 32-48 Pentiumclass cores
 - In order execution
 - Vector unit
 - 16-wide single prec.
 - 8-wide double prec.
 - Vector complete
 - Traditional cachecoherent arch.

- Will be supported by Intel compiler
 - Should be able to vectorize well
 - Easier than CUDA/OpenCL?
- First half of 2010
- Performance for QMC?

The End

Memory performance: Bandwidth

- 50 GFLOPS / (10GB/s / 8 bytes/double) = 40 FLOPs per load/store
- If algorithm has low compute/fetch, you get bad performance
- CPUs again use cache to increase effective bandwidth

CPU vs. GPU: Accuracy 32-atom MnO VMC no Jastrow

Energy	CPU	Error	GPU	Error	Difference	Diff/sigma
Kinetic	61.31310	0.00180	61.31057	0.00081	0.00253	1.3
e-e	17.68930	0.00095	17.68698	0.00049	0.00232	2.2
Local PP	-105.98920	0.00230	-105.58310	0.00110	-0.00600	2.4
Nonlocal PP	-8.20833	0.00072	8.20878	0.00042	0.00045	0.5
Total	-118.09989	0.00027	-118.09926	0.00015	-0.00063	2.0

CPU vs. GPU: Speed

- Jaguar:
 - 6.71 walker "steps" per proc sec.
- Lincoln
 - 67.3 walker "steps" per GPU sec.

OpenCL Working Group

Diverse industry participation

- Processor vendors, system OEMs, middleware vendors, application developers

Open, vendor-neutral royalty-free standard

- Developed under standard Khronos IP framework

Apple will use OpenCL

- Performance-enhancing technology will be used in Mac OS X Snow Leopard

CPU vs. GPU: Speed

CPU

- 8 Abe nodes (64 cores)
- Double precision
- 8 hours
- 8.63 million "moves"
- 18.73 moves/(proc sec)

• GPU

- 1 NVIDA GTX260
 - \$250
 - 896 MB
- 320 walkers
- Mixed prec.
- 9.7 hours
- 8.00 million moves
- 228.8 moves/(proc sec)

12x faster than quad-core Xeon

Why do QMC on a GPU?

- Walker parallelism is ideally suited for massively multithreaded model
- Decent speedups can be attained
- The future of HPC looks like it will include GPUs as a big part
- It's not nearly as hard as it used to be
- Looks like it will be easier in the future

Why not do QMC on a GPU?

- No single-point of entry, many kernels need to be written and tuned
- Need to rethink code structure
- No REALLY big machines exist yet
- Debugging can be a challenge
- Making predictions is hard, especially about the future: I could be wrong.

Memory performance: Latency

• DRAM is slow

A fetch from RAM can take 100-200 clock cycles.

CPUs hide latency with cache

- 3 levels:
 - L1: 64 KB
 - L2: 256 KB
 - 8 MB L3

 It's up to the programmer to make good use of cache, but not always possible