
 QMC in Apuan Alps 2009 1

Some developments
in QMC for solids

Ken Esler, Jeongnim Kim, R.E. Cohen,

Luke Shulenburger, David Ceperley

QMC in the Apuan Alps
July 27, 2009

 QMC in Apuan Alps 2009 2

Outline
• All-electron vs. PP calculations in solids

– Pseudopotential discrepancies
– All-electron simulation in solids
– Combining AE and PP data

• Mixed-basis representation for orbitals
– Storage bottlenecks
– Older approaches
– Mixed-basis representation

• QMC simulations on GPUs
– Intro to GPU computing
– QMCPACK on GPUs

 QMC in Apuan Alps 2009 3

Pseudopotentials
• QMC is only as good as the Hamiltonian

– Early days: all-electron for small molecules
– Pseudopotentials grudgingly adopted later
– Very good work in constructing PPs for DFT

and QMC

• DFT has good ways to evaluate PPs
– All-electron calculations for small systems

verify transferability

• Can we do the same for QMC?

 QMC in Apuan Alps 2009 4

Pseudopotential bias
Example: EOS of c-BN

• 3 PPs give 3 different
equations of state

• HF vs. DFT does not
appear to be the
difference

• No a priori way to know
which is the “best”

• PPs were each
constructed well, but with
different theory.

• Can we do better?

 QMC in Apuan Alps 2009 5

Pseudopotential bias

• 3 PPs give 3 different
equations of state

• HF vs. DFT does not
appear to be the
difference

• No a priori way to know
which is the “best”

• PPs were each
constructed well, but with
different theory.

• Can we do better?

 QMC in Apuan Alps 2009 6

All-electron QMC for solids
• In DFT, we test transferability against

LAPW or PAW calculations
• Can we do the same in QMC?

– Expensive?
– Not too bad for first-row solids
– Still too expensive to large supercells
– Combine PP data with AE data?
– Where do we get our trial wave functions?

 QMC in Apuan Alps 2009 7

• PWs and Y
l

ms are matched at MT boundary

• LAPW order, M, gives the order of matching

– Order 1 matches value only (allows “kinks”)

– Order 2 gives smooth matching

– Matching only exact as

AE QMC for solids:
LAPW methodology

• Outside, use plane-waves

• Inside the “muffin tins”, orbitals are expanded in spherical
harmonics

 QMC in Apuan Alps 2009 8

AE QMC for solids:
QMC methodology

• Use super-LAPW (M=2) to ensure WF is smooth

• Use lmax = ~10 for good continuity!

• Optionally use blending function to ensure variational WF

• Represent u
lm

 as 1D splines (expect near origin)

• Evaluate all splines at once for efficiency

• Use 3D B-splines (BLIPS) for interstitial region

Do sums over G and j offline:

 QMC in Apuan Alps 2009 9

AE QMC for solids:
Practical details

• Modified EXCITING (now Elk) FP-LAPW code

– Remove relativistic corrections

– Export orbitals in HDF5 format

• Requires smaller time-step than PP calculations

• Too expensive to do large supercell

• Can we combine AE simulation with PP data?

– Yes, but only if the cell is big enough that core states
do not contribute to the finite-size errors

– Core bands are flat: no momentum quantization error

– Periodicity of exchange-correlation hole?

 QMC in Apuan Alps 2009 10

Combining AE and PP data

 QMC in Apuan Alps 2009 11

Combining AE and PP data:
Results

• Once AE correction is applied, data from 3 PPs come into
agreement

• Corrected EOS gives good agreement with experiment at
low pressure

 QMC in Apuan Alps 2009 12

Mixed basis representation for orbitals
3D cubic B-spline basis (blips)

• Generalize to 3D with tensor
product of 1D functions

– 64 nonzero elements at any
point in space

– Very fast to evaluate

• Store 1 coefficient per grid point

• Required grid spacing
determined by hardness of PPs

• Storage goes as N2

• May have insufficient RAM for
otherwise doable problems

• Local basis from piecewise
continuous, smooth polynomials

• Functions centered on grid
points

• Strictly local: only 4 nonzero
elements at any point in 1D

 QMC in Apuan Alps 2009 13

Previous solutions to the storage problem

• Share the orbitals on an
SMP node

– Allows 8-16 GB on
current clusters

– Can get to fairly large
systems for perfect
crystals

– Disordered systems
require more storage

• e.g. 32 water
molecules = 11 GB

– In QMCPACK and in
latest CASINO

• Distribute the orbitals with
MPI

– Requires frequent small
messages

– Can impose a
performance penalty

 QMC in Apuan Alps 2009 14

• Short-wavelength
oscillations are only
around ions

• First, localize the orbitals
around the ions
– Alfe and Gillan

– Reboredo and Williamson

• Use nonuniform B-spline
with basis concentrated
around ions

• Nonuniform error much
smaller for the same
number of points

Previous solutions to the storage problem:
Nonuniform splines

Fe orbital in FeO solid

 QMC in Apuan Alps 2009 15

• Appears to work for
systems that can be well-
localized

• Each localized orbital has
a different center

• Cannot amortize the basis
function cost

• Band index cannot be
fastest index in memory

• Slower to evaluate that
uniform, extended B-
splines

Previous solutions to the storage problem:
Nonuniform splines

 QMC in Apuan Alps 2009 16

Mixed-basis representation
• Use same form inside muffin tins as with LAPW orbitals

• Projection onto spherical harmonics can be done
analytically:

• Must choose radii and l
max

• For FeO, use l
max

=5

– Yields 144 coefficients reads per evaluation

– More than 3D B-spline (64),

– Radial splines only evaluated once per PP quadrature

– Runs at about the same speed as standard approach

 QMC in Apuan Alps 2009 17

Mixed basis representation:
FeO example

• Near ions:

– 3D splines handle
function value well,

– but not the Laplacian.

– Laplacian is continuous,
but not smooth.

– Atomic orbitals handle
both well with a fine 1D
grid

 QMC in Apuan Alps 2009 18

Mixed basis representation:
FeO example

• Near ions:

– 3D splines handle
function value well,

– but not the Laplacian

– Laplacian is continuous,
but not smooth

– Atomic orbitals handle
both well with a fine 1D
grid

 QMC in Apuan Alps 2009 19

Mixed basis representation:
Energy

• DMC energy

– 3D B-spline okay down
to ~60 points per dir.

• DMC variance

– Always lower for hybrid
representation

– Many times lower for
very coarse grids

 QMC in Apuan Alps 2009 20

Mixed basis representation:
Variance

• DMC energy

– 3D B-spline okay down
to ~60 points per dir.

• DMC variance

– Always lower for hybrid
representation

– Many times lower for
very coarse grids

 QMC in Apuan Alps 2009 21

Mixed basis representation:
Variance ratio

• DMC energy

– 3D B-spline okay down
to ~60 points per dir.

• DMC variance

– Always lower for hybrid
representation

– Many times lower for
very coarse grids

 QMC in Apuan Alps 2009 22

Mixed basis representation:
Time step error

• Lower variance of local
energy also gives smaller
time step error

• Hybrid representation with
coarse mesh gives lower
time step error than
B-spline only with fine
mesh

 QMC in Apuan Alps 2009 23

Mixed basis summary
• With mixed basis, we appear to get the same dt->0

answer, in about the same time, with lower variance, with
about 1/8 the memory requirement

• Very effective for hard PPs (e.g. those with semicore
states)

• Not as effective with light, molecular systems (e.g. water)

 QMC in Apuan Alps 2009 24

QMC using graphics processors
(GPUs)

 QMC in Apuan Alps 2009 25

Why are GPU's interesting?

• CPU
– 40-60 GFLOPS DP
– 80-120 GFLOPS SP
– 10-30 GB/s memory

bandwidth
– Optimized for single-

thread performance

• GPU
– 85 GFLOPS DP
– 1 TFLOP SP
– 100-150 GB/s memory

bandwidth
– Technology on steeper

trajectory than CPUs
– Optimized for throughput

 QMC in Apuan Alps 2009 26

Why are GPU's interesting?

• CPU

– Hide memory latency
with large cache

– A lot of logic for:
• Instruction reorder
• Branch prediction
• Prefetching

– Relatively few FPUs

• GPU

– Hide memory latency
through simultaneous
multithreading (SMT)

– In-order execution -
little control logic

– Many more FPUs

– Very wide memory bus
(e.g. 512 bit)

 QMC in Apuan Alps 2009 27

Market drivers

• GAMES!
– Gamers buy a new card

each year

– Always want better
performance

– FLOPS/Bandwidth
makes better graphics

– Game designers want
flexibility of GPGPU

• Media
– Content producers

using GPUs

– E.g. Adobe CS4

• Finance
• Medical
• Oil
• HPC for science

 QMC in Apuan Alps 2009 28

NVIDIA G200

1.4 billion transistors

 QMC in Apuan Alps 2009 29

And now for something
completely different...

• GPU architecture
– Is it a vector processor?
– Or is it a barrel processor?
– Or is it a multicore processor?

• YES!

 QMC in Apuan Alps 2009 30

Barrel processors

• Alternative solution to memory latency problem

• Send many independent threads to processor

• Processor executes instructions in a thread
sequentially until it blocks

• Whenever a thread blocks, move on to the next
thread

• With enough threads in the barrel, memory latency
can be completely hidden

• Requires many independent tasks which can run in
parallel

 QMC in Apuan Alps 2009 31

Vector processors
• Execution logic is expensive
• Perform the same instruction on multiple

data (SIMD)
• x86 has short vector instructions (SSE)

– 4 for single prec.; 2 for double precision

• GPU variation: SIMT
– Each thread has its own data
– Each thread executes same inst., but writing

result can be masked with conditionals
– Vector length is variable, but multiple of 32

 QMC in Apuan Alps 2009 32

Multicore processors

• GPUs are separated into independent units
– Data can be exchanged on the same unit for a

given kernel (shared memory)
– Data can be exchanged between units through

DRAM
– Data can be exchanged with CPU through API

calls (slow!)
– NVIDIA G200: 30 processor cores

• Need hundreds of independent threads to keep
GPU busy

 QMC in Apuan Alps 2009 33

GPU memory bandwidth

• NVIDIA Tesla: 100 GB/s
• AMD 4870: 115 GB/s
• How?

– Very fast DRAM (GDDR3-GDDR5)
– Very wide bus (256-512 bits)

• Requires very wide, aligned reads
– Read 16 floats or 8 doubles at time
– Reads must be sequential and 64-byte aligned

 QMC in Apuan Alps 2009 34

GPU programming
• “Host” (CPU) does I/O, complicated processing, etc.

• GPU executes “kernels”: small functions to do one task
many times

– Limited number of registers and shared memory

– All cores execute the same kernel

– Single precision is very fast

– Double precision is faster than CPU, but much slower
than single precision

• Data is passed between CPU and GPU memory across
PCI bus with API calls

– Currently 1.5 – 8 GB/s: SLOW!

 QMC in Apuan Alps 2009 35

CUDA

• NVIDIA's extensions to C/C++ to allow GPU execution

• Mix CPU and GPU code in the same file

• A few language extensions for device code

• A few API calls for memory allocation, data transfer, etc.

• Challenges:

– Debugging: sychronoization bugs,
no “printf” on GPU!

– Memory layout and access patterns!

– Pointer book-keeping

– Exposing parallelism

• Very good forum (CUDA zone)

 QMC in Apuan Alps 2009 36

__global__ void
two_body_sum_kernel
(float R[], int e1_first, int e1_last, int e2_first, int e2_last, float spline_coefs[],
 int numCoefs, float rMax, float lattice[], float latticeInv[], float sum[])
{
 // Some setup goes here...
 int N1 = e1_last - e1_first + 1;
 int N2 = e2_last - e2_first + 1;
 int NB1 = (N1+BS-1)//BS;
 int NB2 = (N2+BS-1)/BS;

 float mysum = (float)0.0;
 for (int b1=0; b1 < NB1; b1++) {
 // Load block of positions from global memory
 for (int i=0; i<3; i++)
 if ((3*b1+i)*BS + tid < 3*N1)
 r1[0][i*BS + tid] = myR[3*e1_first + (3*b1+i)*BS + tid];
 __syncthreads();
 int ptcl1 = e1_first+b1*BS + tid;
 for (int b2=0; b2 < NB2; b2++) {
 // Load block of positions from global memory
 for (int i=0; i<3; i++)
 if ((3*b2+i)*BS + tid < 3*N2)
 r2[0][i*BS + tid] = myR[3*e2_first + (3*b2+i)*BS + tid];
 __syncthreads();
 // Now, loop over particles
 int end = (b2+1)*BS < N2 ? BS : N2-b2*BS;
 for (int j=0; j<end; j++) {
 int ptcl2 = e2_first + b2*BS+j;
 float dx, dy, dz;
 dx = r2[j][0] - r1[tid][0];
 dy = r2[j][1] - r1[tid][1];
 dz = r2[j][2] - r1[tid][2];
 float dist = min_dist(dx, dy, dz, L, Linv);
 if (ptcl1 != ptcl2 && (ptcl1 < (N1+e1_first)) && (ptcl2 < (N2+e2_first)))
 mysum += eval_1d_spline (dist, rMax, drInv, A, coefs);
 }
 synchthreads();
 }
 }

 // Sum result over threads
 __shared__ float shared_sum[BS];
 shared_sum[tid] = mysum;
 __syncthreads();
 for (int s=BS>>1; s>0; s >>=1) {
 if (tid < s)
 shared_sum[tid] += shared_sum[tid+s];
 __syncthreads();
 }
 // Avoid double-counting
 float factor = (e1_first == e2_first) ? 0.5 : 1.0;
 if (tid==0)
 sum[blockIdx.x] += factor*shared_sum[0];
}

 QMC in Apuan Alps 2009 37

QMCPACK
• Developed at UIUC

– Principal developer:
• Jeongnim Kim

• C++ code with extensive
template optimizations

• Hybrid OpenMP/MPI
parallelization model

• Uses XML and HDF5
standards

• Object-oriented design for
extensibility

• Open source and freely
available

• Orbitals

– Gaussian, STOs, PW,
B-spline, mixed-basis,
LAPW

– Real or complex WFs

• VMC, DMC, and RMC

• Standard variance and
energy opt. methods

• Scaled to 100k cores

• Works with ABINIT, Pwscf,
Qbox, Gaussian, etc.

 QMC in Apuan Alps 2009 38

QMC on a GPU
• Advantages:

– Walkers provide plenty of work for a GPU kernel

• Challenges:

– Orbital storage: orbitals must fit in 4 GB GPU memory.
 Distribution on multiple cards could be expensive.

– Many kernels
• Orbital evaluation
• Determinant evaluation, ratios, and update
• Jastrow evaluation and ratios
• Coulomb interaction, Ewald sums
• Pseudopotential ratios
• Other observables

 QMC in Apuan Alps 2009 39

QMCPACK on GPU
• Reimplemented VMC & DMC drivers to be walker-parallel, but

still particle by particle

• Implemented walker-parallel kernels for:

– B-spline orbital evaluation

– Determinant updates, ratios, inverses, gradients, laplacians,
etc.

– One-body and two-body B-spline Jastrows

– Periodic coulomb interaction

– Nonlocal pseudopotentials

• Single precision for everything but occasional inverse
recomputation

• Use texture units for 1D potential interpolation

• Keep all walker-related data in GPU memory

• CPU proposes, accepts/rejects moves; branches; collects
averages and does I/O.

 QMC in Apuan Alps 2009 40

Test: 64-atom diamond

• 64-atom DMC simulation
of diamond

• Burkaztki et al. PP

• LDA orbitals

• 1+2-body Jastrow

– Optimized on CPU

• dt=0.01/Hartree

• Simple EOS calculation

– No phonons

– No finite-size
corrections

 QMC in Apuan Alps 2009 41

CPU vs. GPU: Accuracy

• CPU and GPU give same
results within statistical
error

• GPU uses single precision
for all but recomputing
inverse

 QMC in Apuan Alps 2009 42

CPU vs. GPU: AccuracyCPU vs. GPU: Accuracy

• CPU and GPU give same
results within statistical
error

• GPU uses single precision
for all but recomputing
inverse

 QMC in Apuan Alps 2009 43

CPU vs. GPU: AccuracyCPU vs. GPU: Accuracy

• CPU and GPU give same
results within statistical
error

• GPU uses single precision
for all but recomputing
inverse

 QMC in Apuan Alps 2009 44

CPU vs. GPU: AccuracyCPU vs. GPU: Accuracy

• CPU and GPU give same
results within statistical
error

• GPU uses single precision
for all but recomputing
inverse

 QMC in Apuan Alps 2009 45

CPU vs. GPU: Speed

• CPU run

– Cray XT5 (Kraken)

– 3072 Opteron cores

– 1280 walkers per V

– Double precision

– Block time:
• 21.0 seconds

• CPU + GPU run

– Dell cluster (Lincoln)

– 48 G200 GPUs
(+48 Xeon cores)

– 1280 walkers per V

– Mixed precision

– Block time:
• 24.4 seconds

1 G200 GPU = ~14 quad-core Opterons

 QMC in Apuan Alps 2009 46

CPU vs. GPU: Speed

• 32-atom MnO simulation

• We need many walkers
per GPU to saturate speed

• May run out of GPU
memory first

• May require long wall clock
time

 QMC in Apuan Alps 2009 47

GPU kernel breakdown

Inverse update 30.00%
2-body 18.00%
B-spline 17.00%

13.00%
1-body 5.00%

4.00%
Data transfer 3.50%
Remainder 9.50%

eikr

Inverse recomp.

 QMC in Apuan Alps 2009 48

Future work

• WF optimization
– Derivatives w.r.t.

WF parameters

• Larger systems?
• Generalize

– Nonperiodic BC

• More WFs
– Hybrid orbitals
– Atomic bases
– 3-body Jastrows
– Multideterminant?

• More estimators
– MPC
– Pair correlation

 QMC in Apuan Alps 2009 49

Future speculation

• NVIDIA
– Continue to support

CUDA/OpenCL
– Next gen. (GT300)

• Due 4th quarter
• About 2.5x faster?
• Faster double precision

– FORTRAN
• PGI GPU extensions

• AMD
– OpenCL out soon
– Next gen (RV870)

• Due October?
• 2.1 TFLOPS (SP)

 QMC in Apuan Alps 2009 50

Future speculation:
Intel Larrabee

• 32-48 Pentium-
class cores
– In order execution
– Vector unit

• 16-wide single prec.
• 8-wide double prec.
• Vector complete

– Traditional cache-
coherent arch.

• Will be supported
by Intel compiler
– Should be able to

vectorize well
– Easier than

CUDA/OpenCL?

• First half of 2010
• Performance for

QMC?

 QMC in Apuan Alps 2009 51

The End

 QMC in Apuan Alps 2009 52

Memory performance:
Bandwidth

• 50 GFLOPS / (10GB/s / 8 bytes/double) =
40 FLOPs per load/store

• If algorithm has low compute/fetch, you get
bad performance

• CPUs again use cache to increase effective
bandwidth

 QMC in Apuan Alps 2009 53

CPU vs. GPU: Accuracy
32-atom MnO VMC no Jastrow

Energy CPU Error GPU Error Difference
Kinetic 61.31310 0.00180 61.31057 0.00081 0.00253 1.3
e-e 17.68930 0.00095 17.68698 0.00049 0.00232 2.2
Local PP -105.98920 0.00230 -105.58310 0.00110 -0.00600 2.4
Nonlocal PP -8.20833 0.00072 8.20878 0.00042 0.00045 0.5
Total -118.09989 0.00027 -118.09926 0.00015 -0.00063 2.0

Diff/sigma

 QMC in Apuan Alps 2009 54

CPU vs. GPU: Speed

• Jaguar:

– 6.71 walker “steps” per proc sec.

• Lincoln

– 67.3 walker “steps” per GPU sec.

 QMC in Apuan Alps 2009 55

 QMC in Apuan Alps 2009 56

CPU vs. GPU: Speed

• CPU

– 8 Abe nodes (64 cores)

– Double precision

– 8 hours

– 8.63 million “moves”

– 18.73 moves/(proc sec)

• GPU

– 1 NVIDA GTX260
• $250
• 896 MB

– 320 walkers

– Mixed prec.

– 9.7 hours

– 8.00 million moves

– 228.8 moves/(proc sec)

12x faster than quad-core Xeon

 QMC in Apuan Alps 2009 57

Why do QMC on a GPU?

• Walker parallelism is ideally suited for
massively multithreaded model

• Decent speedups can be attained
• The future of HPC looks like it will include

GPUs as a big part
• It's not nearly as hard as it used to be
• Looks like it will be easier in the future

 QMC in Apuan Alps 2009 58

Why not do QMC on a GPU?

• No single-point of entry, many kernels need
to be written and tuned

• Need to rethink code structure
• No REALLY big machines exist yet
• Debugging can be a challenge
• Making predictions is hard, especially about

the future: I could be wrong.

 QMC in Apuan Alps 2009 59

Memory performance: Latency

• DRAM is slow
– A fetch from RAM can take 100-200 clock

cycles.

• CPUs hide latency with cache
– 3 levels:

• L1: 64 KB
• L2: 256 KB
• 8 MB L3

• It's up to the programmer to make good use
of cache, but not always possible

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Business Template
	Slide 25
	Slide 26
	Slide 27
	Picture slide
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

