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Outline
• All-electron vs. PP calculations in solids

– Pseudopotential discrepancies
– All-electron simulation in solids
– Combining AE and PP data

• Mixed-basis representation for orbitals
– Storage bottlenecks
– Older approaches
– Mixed-basis representation

• QMC simulations on GPUs
– Intro to GPU computing
– QMCPACK on GPUs
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Pseudopotentials
• QMC is only as good as the Hamiltonian

– Early days:  all-electron for small molecules
– Pseudopotentials grudgingly adopted later
– Very good work in constructing PPs for DFT 

and QMC

• DFT has good ways to evaluate PPs
– All-electron calculations for small systems 

verify transferability

• Can we do the same for QMC?
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Pseudopotential bias
Example:  EOS of c-BN

• 3 PPs give 3 different 
equations of state

• HF vs. DFT does not 
appear to be the 
difference

• No a priori way to know 
which is the “best”

• PPs were each 
constructed well, but with 
different theory.

• Can we do better?
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All-electron QMC for solids
• In DFT, we test transferability against 

LAPW or PAW calculations
• Can we do the same in QMC?

– Expensive?
– Not too bad for first-row solids
– Still too expensive to large supercells
– Combine PP data with AE data?
– Where do we get our trial wave functions?
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• PWs and Y
l

ms are matched at MT boundary

• LAPW order, M, gives the order of matching

– Order 1 matches value only (allows “kinks”)

– Order 2 gives smooth matching

– Matching only exact as 

AE QMC for solids:  
LAPW methodology

• Outside, use plane-waves

• Inside the “muffin tins”, orbitals are expanded in spherical 
harmonics
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AE QMC for solids:
QMC methodology

• Use super-LAPW (M=2) to ensure WF is smooth

• Use lmax = ~10 for good continuity!

• Optionally use blending function to ensure variational WF

• Represent u
lm

 as 1D splines (expect near origin)

• Evaluate all splines at once for efficiency

• Use 3D B-splines (BLIPS) for interstitial region

Do sums over G and j offline:
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AE QMC for solids:
Practical details

• Modified EXCITING (now Elk) FP-LAPW code

– Remove relativistic corrections

– Export orbitals in HDF5 format

• Requires smaller time-step than PP calculations

• Too expensive to do large supercell

• Can we combine AE simulation with PP data?

– Yes, but only if the cell is big enough that core states 
do not contribute to the finite-size errors

– Core bands are flat:  no momentum quantization error

– Periodicity of exchange-correlation hole?
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Combining AE and PP data
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Combining AE and PP data:
Results

• Once AE correction is applied, data from 3 PPs come into 
agreement

• Corrected EOS gives good agreement with experiment at 
low pressure
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Mixed basis representation for orbitals
3D cubic B-spline basis (blips)

• Generalize to 3D with tensor 
product of 1D functions

– 64 nonzero elements at any 
point in space

– Very fast to evaluate

• Store 1 coefficient per grid point

• Required grid spacing 
determined by hardness of PPs

• Storage goes as N2

• May have insufficient RAM for 
otherwise doable problems

• Local basis from piecewise 
continuous, smooth polynomials

• Functions centered on grid 
points

• Strictly local:  only 4 nonzero 
elements at any point in 1D
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Previous solutions to the storage problem

• Share the orbitals on an 
SMP node

– Allows 8-16 GB on 
current clusters

– Can get to fairly large 
systems for perfect 
crystals

– Disordered systems 
require more storage

• e.g. 32 water 
molecules = 11 GB

– In QMCPACK and in 
latest CASINO

• Distribute the orbitals with 
MPI

– Requires frequent small 
messages

– Can impose a 
performance penalty
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• Short-wavelength 
oscillations are only 
around ions

• First, localize the orbitals 
around the ions
– Alfe and Gillan

– Reboredo and Williamson

• Use nonuniform B-spline 
with basis concentrated 
around ions

• Nonuniform error much 
smaller for the same 
number of points

Previous solutions to the storage problem:
Nonuniform splines

Fe orbital in FeO solid
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• Appears to work for 
systems that can be well-
localized

• Each localized orbital has 
a different center

• Cannot amortize the basis 
function cost 

• Band index cannot be 
fastest index in memory

• Slower to evaluate that 
uniform, extended B-
splines

Previous solutions to the storage problem:
Nonuniform splines
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Mixed-basis representation
• Use same form inside muffin tins as with LAPW orbitals

• Projection onto spherical harmonics can be done 
analytically:

• Must choose radii and l
max

• For FeO, use l
max

=5

– Yields 144 coefficients reads per evaluation

– More than 3D B-spline (64),

– Radial splines only evaluated once per PP quadrature

– Runs at about the same speed as standard approach
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Mixed basis representation:
FeO example

• Near ions:

– 3D splines handle 
function value well,

– but not the Laplacian.

– Laplacian is continuous, 
but not smooth.

– Atomic orbitals handle 
both well with a fine 1D 
grid
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Mixed basis representation:
Energy

• DMC energy

– 3D B-spline okay down 
to ~60 points per dir.

• DMC variance

– Always lower for hybrid 
representation

– Many times lower for 
very coarse grids
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Mixed basis representation:
Variance

• DMC energy

– 3D B-spline okay down 
to ~60 points per dir.

• DMC variance

– Always lower for hybrid 
representation

– Many times lower for 
very coarse grids



 QMC in Apuan Alps 2009 21

Mixed basis representation:
Variance ratio

• DMC energy

– 3D B-spline okay down 
to ~60 points per dir.

• DMC variance

– Always lower for hybrid 
representation

– Many times lower for 
very coarse grids
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Mixed basis representation:
Time step error

• Lower variance of local 
energy also gives smaller 
time step error

• Hybrid representation with 
coarse mesh gives lower 
time step error than 
B-spline only with fine 
mesh
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Mixed basis summary
• With mixed basis, we appear to get the same dt->0 

answer, in about the same time, with lower variance, with 
about 1/8 the memory requirement

• Very effective for hard PPs (e.g. those with semicore 
states)

• Not as effective with light, molecular systems (e.g. water)
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QMC using graphics processors 
(GPUs)
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Why are GPU's interesting?

• CPU
– 40-60 GFLOPS DP
– 80-120 GFLOPS SP
– 10-30 GB/s memory 

bandwidth
– Optimized for single-

thread performance

• GPU
– 85 GFLOPS DP
– 1 TFLOP SP
– 100-150 GB/s memory 

bandwidth
– Technology on steeper 

trajectory than CPUs
– Optimized for throughput
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Why are GPU's interesting?

• CPU

– Hide memory latency 
with large cache

– A lot of logic for:
• Instruction reorder
• Branch prediction
• Prefetching

– Relatively few FPUs

• GPU

– Hide memory latency 
through simultaneous 
multithreading (SMT)

– In-order execution -
little control logic

– Many more FPUs

– Very wide memory bus 
(e.g. 512 bit)
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Market drivers

• GAMES!
– Gamers buy a new card 

each year

– Always want better 
performance

– FLOPS/Bandwidth 
makes better graphics

– Game designers want 
flexibility of GPGPU

• Media
– Content producers 

using GPUs

– E.g. Adobe CS4

• Finance
• Medical
• Oil
• HPC for science
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NVIDIA G200

1.4 billion transistors
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And now for something 
completely different...

• GPU architecture
– Is it a vector processor?
– Or is it a barrel processor?
– Or is it a multicore processor?

• YES!
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Barrel processors

• Alternative solution to memory latency problem

• Send many independent threads to processor

• Processor executes instructions in a thread 
sequentially until it blocks

• Whenever a thread blocks, move on to the next 
thread

• With enough threads in the barrel, memory latency 
can be completely hidden

• Requires many independent tasks which can run in 
parallel
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Vector processors
• Execution logic is expensive
• Perform the same instruction on multiple 

data (SIMD)
• x86 has short vector instructions (SSE)

– 4 for single prec.;  2 for double precision

• GPU variation:  SIMT
– Each thread has its own data
– Each thread executes same inst., but writing 

result can be masked with conditionals
– Vector length is variable, but multiple of 32
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Multicore processors

• GPUs are separated into independent units
– Data can be exchanged on the same unit for a 

given kernel (shared memory)
– Data can be exchanged between units through 

DRAM 
– Data can be exchanged with CPU through API 

calls (slow!)
– NVIDIA G200:  30 processor cores

• Need hundreds of independent threads to keep 
GPU busy
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GPU memory bandwidth

• NVIDIA Tesla:  100 GB/s
• AMD 4870:       115 GB/s
• How?

– Very fast DRAM (GDDR3-GDDR5)
– Very wide bus (256-512 bits)

• Requires very wide, aligned reads
– Read 16 floats or 8 doubles at time
– Reads must be sequential and 64-byte aligned
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GPU programming
• “Host” (CPU) does I/O, complicated processing, etc.

• GPU executes “kernels”:  small functions to do one task 
many times

– Limited number of registers and shared memory

– All cores execute the same kernel

– Single precision is very fast

– Double precision is faster than CPU, but much slower 
than single precision

• Data is passed between CPU and GPU memory across 
PCI bus with API calls

– Currently 1.5 – 8 GB/s:  SLOW!
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CUDA

• NVIDIA's extensions to C/C++ to allow GPU execution

• Mix CPU and GPU code in the same file

• A few language extensions for device code

• A few API calls for memory allocation, data transfer, etc.

• Challenges:

– Debugging:  sychronoization bugs, 
no “printf” on GPU!

– Memory layout and access patterns!

– Pointer book-keeping

– Exposing parallelism

• Very good forum (CUDA zone)
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__global__ void
two_body_sum_kernel
(float R[], int e1_first, int e1_last, int e2_first, int e2_last, float spline_coefs[],
 int numCoefs, float rMax, float lattice[], float latticeInv[], float sum[])
{
  // Some setup goes here...
  int N1 = e1_last - e1_first + 1;
  int N2 = e2_last - e2_first + 1;
  int NB1 = (N1+BS-1)//BS;
  int NB2 = (N2+BS-1)/BS;

  float mysum = (float)0.0; 
  for (int b1=0; b1 < NB1; b1++) {
    // Load block of positions from global memory
    for (int i=0; i<3; i++)
      if ((3*b1+i)*BS + tid < 3*N1) 
        r1[0][i*BS + tid] = myR[3*e1_first + (3*b1+i)*BS + tid];
    __syncthreads();
    int ptcl1 = e1_first+b1*BS + tid;
    for (int b2=0; b2 < NB2; b2++) {
      // Load block of positions from global memory
      for (int i=0; i<3; i++)
         if ((3*b2+i)*BS + tid < 3*N2) 
            r2[0][i*BS + tid] = myR[3*e2_first + (3*b2+i)*BS + tid];
      __syncthreads();
      // Now, loop over particles
      int end = (b2+1)*BS < N2 ? BS : N2-b2*BS;
      for (int j=0; j<end; j++) {
         int ptcl2 = e2_first + b2*BS+j;
         float dx, dy, dz;
         dx = r2[j][0] - r1[tid][0];
         dy = r2[j][1] - r1[tid][1];
         dz = r2[j][2] - r1[tid][2];
         float dist = min_dist(dx, dy, dz, L, Linv);
         if (ptcl1 != ptcl2 && (ptcl1 < (N1+e1_first) ) && (ptcl2 < (N2+e2_first)))
            mysum += eval_1d_spline (dist, rMax, drInv, A, coefs);
      }
      synchthreads();
    }
  }

 // Sum result over threads
  __shared__ float shared_sum[BS];
  shared_sum[tid] = mysum;
  __syncthreads();
  for (int s=BS>>1; s>0; s >>=1) {
    if (tid < s)
      shared_sum[tid] += shared_sum[tid+s];
    __syncthreads();
  }
  // Avoid double-counting
  float factor = (e1_first == e2_first) ? 0.5 : 1.0;
  if (tid==0)
    sum[blockIdx.x] += factor*shared_sum[0];
}
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QMCPACK
• Developed at UIUC

– Principal developer:
• Jeongnim Kim

• C++ code with extensive 
template optimizations

• Hybrid OpenMP/MPI 
parallelization model

• Uses XML and HDF5 
standards

• Object-oriented design for 
extensibility

• Open source and freely 
available

• Orbitals

– Gaussian, STOs, PW, 
B-spline, mixed-basis, 
LAPW

– Real or complex WFs

• VMC, DMC, and RMC

• Standard variance and 
energy opt. methods

• Scaled to 100k cores

• Works with ABINIT, Pwscf, 
Qbox, Gaussian, etc.
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QMC on a GPU
• Advantages:

– Walkers provide plenty of work for a GPU kernel

• Challenges:

– Orbital storage:  orbitals must fit in 4 GB GPU memory. 
 Distribution on multiple cards could be expensive.

– Many kernels
• Orbital evaluation
• Determinant evaluation, ratios, and update
• Jastrow evaluation and ratios
• Coulomb interaction, Ewald sums
• Pseudopotential ratios
• Other observables
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QMCPACK on GPU
• Reimplemented VMC & DMC drivers to be walker-parallel, but 

still particle by particle

• Implemented walker-parallel kernels for:

– B-spline orbital evaluation

– Determinant updates, ratios, inverses, gradients, laplacians, 
etc.

– One-body and two-body B-spline Jastrows

– Periodic coulomb interaction

– Nonlocal pseudopotentials

• Single precision for everything but occasional inverse 
recomputation

• Use texture units for 1D potential interpolation 

• Keep all walker-related data in GPU memory

• CPU proposes, accepts/rejects moves; branches; collects 
averages and does I/O.
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Test:  64-atom diamond

• 64-atom DMC simulation 
of diamond

• Burkaztki et al. PP

• LDA orbitals

• 1+2-body Jastrow

– Optimized on CPU

• dt=0.01/Hartree

• Simple EOS calculation

– No phonons

– No finite-size 
corrections
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CPU vs. GPU:  Accuracy

• CPU and GPU give same 
results within statistical 
error

• GPU uses single precision 
for all but recomputing 
inverse
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CPU vs. GPU:  Speed

• CPU run

– Cray XT5 (Kraken)

– 3072 Opteron cores

– 1280 walkers per V

– Double precision

– Block time:
• 21.0 seconds

• CPU + GPU run

– Dell cluster (Lincoln)

– 48 G200 GPUs 
(+48 Xeon cores)

– 1280 walkers per V

– Mixed precision

– Block time:
• 24.4 seconds

1 G200 GPU = ~14 quad-core Opterons
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CPU vs. GPU:  Speed

• 32-atom MnO simulation

• We need many walkers 
per GPU to saturate speed

• May run out of GPU 
memory first

• May require long wall clock 
time
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GPU kernel breakdown

Inverse update 30.00%
2-body 18.00%
B-spline 17.00%

13.00%
1-body 5.00%

4.00%
Data transfer 3.50%
Remainder 9.50%

eikr

Inverse recomp.
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Future work

• WF optimization
– Derivatives w.r.t. 

WF parameters

• Larger systems?
• Generalize

– Nonperiodic BC

• More WFs
– Hybrid orbitals
– Atomic bases
– 3-body Jastrows
– Multideterminant?

• More estimators
– MPC
– Pair correlation
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Future speculation

• NVIDIA
– Continue to support 

CUDA/OpenCL
– Next gen. (GT300)

• Due 4th quarter
• About 2.5x faster?
• Faster double precision

– FORTRAN
• PGI GPU extensions

• AMD
– OpenCL out soon
– Next gen (RV870)

• Due October?
• 2.1 TFLOPS (SP)
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Future speculation:  
Intel Larrabee

• 32-48 Pentium-
class cores
– In order execution
– Vector unit

• 16-wide single prec.
• 8-wide double prec.
• Vector complete

– Traditional cache-
coherent arch.

• Will be supported 
by Intel compiler
– Should be able to 

vectorize well
– Easier than 

CUDA/OpenCL?

• First half of 2010
• Performance for 

QMC?
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The End
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Memory performance:  
Bandwidth

• 50 GFLOPS / (10GB/s / 8 bytes/double) = 
40 FLOPs per load/store

• If algorithm has low compute/fetch, you get 
bad performance

• CPUs again use cache to increase effective 
bandwidth
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CPU vs. GPU:  Accuracy
32-atom MnO VMC no Jastrow

Energy CPU Error GPU Error Difference
Kinetic 61.31310 0.00180 61.31057 0.00081 0.00253 1.3
e-e 17.68930 0.00095 17.68698 0.00049 0.00232 2.2
Local PP -105.98920 0.00230 -105.58310 0.00110 -0.00600 2.4
Nonlocal PP -8.20833 0.00072 8.20878 0.00042 0.00045 0.5
Total -118.09989 0.00027 -118.09926 0.00015 -0.00063 2.0

Diff/sigma
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CPU vs. GPU:  Speed

• Jaguar:

– 6.71 walker “steps” per proc sec.

• Lincoln

– 67.3 walker “steps” per GPU sec.
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CPU vs. GPU:  Speed

• CPU

– 8 Abe nodes (64 cores)

– Double precision

– 8 hours

– 8.63 million “moves”

– 18.73 moves/(proc sec)

• GPU

– 1 NVIDA GTX260
• $250
• 896 MB

– 320 walkers

– Mixed prec.

– 9.7 hours

– 8.00 million moves

– 228.8 moves/(proc sec)

12x faster than quad-core Xeon
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Why do QMC on a GPU?

• Walker parallelism is ideally suited for 
massively multithreaded model

• Decent speedups can be attained
• The future of HPC looks like it will include 

GPUs as a big part
• It's not nearly as hard as it used to be
• Looks like it will be easier in the future
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Why not do QMC on a GPU?

• No single-point of entry, many kernels need 
to be written and tuned

• Need to rethink code structure
• No REALLY big machines exist yet
• Debugging can be a challenge
• Making predictions is hard, especially about 

the future:  I could be wrong.
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Memory performance:  Latency

• DRAM is slow
– A fetch from RAM can take 100-200 clock 

cycles.

• CPUs hide latency with cache
– 3 levels:

• L1:  64 KB
• L2:  256 KB
• 8 MB L3

• It's up to the programmer to make good use 
of cache, but not always possible
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