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Two-Dimensional Homogeneous Electron Gas (I)

• 2D HEG: set of electrons moving in 2D in a uniform, inert, neutralising background.

• Hamiltonian (for finite system):

Ĥ =
∑

i

−1
2
∇2

i +
∑

j>i

vE(rij) +
NvM

2
.

Infinite-system ground-state energy per particle depends only on the density (specified
by radius rs of circle containing one electron on average) and spin polarisation
[ζ = (N↑ −N↓)/N ].

• Physical realisations:

– Electrons on metal surfaces. E.g. Cu [111].
– Electrons on droplets of liquid He. Held in place by image charges.
– Inversion layers in MOS devices. Can easily tune density. Electrons far from

dopants; fewer complications due to disorder; technologically important.



Fermi Liquid Theory

Fermi liquid theory1: low-energy excitations in a fluid of interacting electrons can be
treated as excitations of independent quasiparticles occupying plane-wave states.

Justification: scattering rate of quasiparticles between plane-wave states is low (and
vanishes at Fermi surface) because of Pauli exclusion principle. Hence single-particle
momentum states are approximately good quantum numbers near Fermi surface.
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1 L. D. Landau, JETP 3, 920 (1957); L. D. Landau, JETP 5, 101 (1957); L. D. Landau, JETP 8, 70 (1959).



Renormalisation of the Electron Mass

Quasiparticle energy–momentum relationship E(k) generally differs from that of free
electrons.

The description of most metallic properties, e.g. response functions, involves the
excitation of a few particles close to the Fermi surface.

For excitations close to the Fermi surface, the main effect of the modification to the
band is a change in the gradient (offsets to the energy band are not significant).

In this region, excitations are like those of free particles with a quasiparticle effective
mass (EM) such that the free-particle band has the same gradient as the quasiparticle
band at the Fermi surface.

The EM is

m∗ =
kF

(∂E/∂k)kF

.



Landau Energy Functional

As in Hartree–Fock theory, total energy is not simply the sum of single-particle energies.
Quasiparticle energies depend on distribution of other quasiparticles.

We may write the Landau energy functional , which gives the dependence of the total
energy on changes to the quasiparticle occupation numbers δNk,σ from the Fermi–Dirac
distribution at T = 0, as

E = E0 +
∑

k,σ

Eσ(k)δNk,σ +
1
2

∑

k,σ

∑

k′,σ′
fσ,σ′(k,k′)δNk,σδNk′,σ′,

where E0 is the ground-state energy.

• Eσ(k) is the energy of an isolated quasiparticle. Near the Fermi surface, Eσ(k) =
µ + (kF/m∗)(k − kF ), where µ is the chemical potential.

• fσ,σ′(k,k′) describes quasiparticle interactions. Near the Fermi surface, f only
depends on the angle between k and k′.



Fermi Liquid Parameters

The local quasiparticle energy

Ẽσ(k) = Eσ(k) +
∑

k′σ′
fσ,σ′(k,k′)δNk′,σ′

plays the role of the free-particle energy in thermodynamic calculations.

In most cases of interest, the quasiparticle occupation number only changes near the
Fermi surface. In this case we may assume that fσ,σ′(k,k′) only depends on the angle
between k and k′ and that E(k) is free-particle-like (with mass m∗).

For calculations of many quantities of interest, the quasiparticle number is approximately
conserved, i.e.,

∑
k,σ δNk,σ = 0. If δNk,σ is also spherically symmetric then the second

term in the local quasiparticle energy vanishes. Hence one can calculate e.g. the heat
capacity as the heat capacity of a gas of noninteracting Fermions of mass m∗.

For calculations which involve changes to the number of quasiparticles, e.g. a calculation
of the compressibility, or for calculations involving an anisotropic change in the
quasiparticle distribution, angular integrals over fσ,σ′(k,k′) at the Fermi surface are
required. These are called the Fermi liquid parameters.



Quasiparticle Effective Mass of the 2D HEG

Surprisingly, the EM of a paramagnetic 2D HEG has been the subject of great controversy
in recent years.

Early experiments2 found a large enhancement of the EM at low density; more recent
experiments3 have contradicted this.

On the theoretical side, GW calculations give a range of possible results depending on
the choice of effective interaction, while previous QMC studies4 have suggested that
there is much less enhancement of the EM than found in any of the experiments.

Finally, the recent experiments of Padmanabhan et al. have shown that the EMs in
paramagnetic and ferromagnetic HEGs behave quite differently as a function of density,
as had been predicted by theorists.5

Understanding the magnetic behaviour of the 2D HEG at low density will play an
important role in the design of spintronic devices.

2 J. L. Smith and P. J. Stiles, Phys. Rev. Lett. 29, 102 (1972); V. M. Pudalov et al., Phys. Rev. Lett. 88, 196404 (2002).
3 Y.-W. Tan et al., Phys. Rev. Lett. 94, 016405 (2005); M. Padmanabhan et al., Phys. Rev. Lett. 101, 026402 (2008).
4 Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev. B 50, 1684 (1994).
5 Y. Zhang and S. Das Sarma, Phys. Rev. Lett. 95, 256603 (2005).



Electronic Energy Band

The electronic energy band E(k) is defined in terms of the total energy difference when
an electron is added to or subtracted from a HEG at a constant cell volume:

• Occupied k: E(k) is the difference between the total closed-shell GS energy and the
energy of an (N − 1)-electron system with an electron removed from k.

• Unoccupied k: E(k) is the difference between the energy of the (N + 1)-electron
system in which k is occupied and the closed-shell GS energy.

It follows from the discussion above that within Fermi liquid theory the electronic
energy band agrees with the quasiparticle band in the vicinity of the Fermi surface (but
does not include finite-lifetime effects away from the Fermi surface).

So we can differentiate the electronic band to find the EM.



QMC Calculations (I)

We have performed the first complete DMC calculation of the 2D HEG electronic energy
band, enabling us to predict the EM.6

Kwon et al. attempted to calculate the EM by promoting electrons from just below the
Fermi edge to just above it, then fitting the EM and other Fermi liquid parameters to
the energy differences evaluated within QMC.

This allows the Fermi liquid parameters to be determined at the same time as the EM,
but noise and finite-size errors make determining the EM difficult. Different variants of
Kwon’s method give different results.

By adding or removing electrons, we avoid the need to consider the effect of the
electron–hole interaction. We can therefore calculate the EM with relative ease.

Once the EM has been determined, obtaining the other Fermi liquid parameters using
the method of Kwon et al. should be relatively straightforward (especially as we have
better wave functions and can study larger systems). Will do this soon.

6 N. D. Drummond and R. J. Needs, submitted to Phys. Rev. Lett. (2009).



QMC Calculations (II)

DMC takes one ∼ 99% of the way from the HF band to the real band.
Hence the pathological behaviour of the HF band is also present in the DMC band.
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HF band and its derivative for a paramagnetic 2D HEG at rs = 10 a.u.

Avoid pathology at Fermi surface by fitting to DMC band over a wide range of k.



QMC Calculations (III)

In our finite simulation cell subject to (twisted) periodic boundary conditions, the
available momentum states fall on the (offset) grid of reciprocal lattice points.

We have confirmed that finite-size biases are small by carrying out simulations in different
cell sizes. But see later. . .

Having determined the energy band at a series of k values, we performed a least-squares
fit of a quartic function E(k) = α0 + α2k

2 + α4k
4 to our data.

We used “magic” numbers of electrons N in each of our ground-state calculations,
corresponding to closed-shell configurations. Hence a real, single-determinant wave
function is appropriate, facilitating the optimisation of the wave function.

This also minimises angular effects in the excited-state calculations.

We verified that our DMC results are converged with respect to time step.



Assessing the Accuracy of our DMC Calculations (I)

Occupied bandwidth: ∆E = E(kF )− E(0) = E−(0)− E−(kF ).

DMC BW is expected to be an upper bound: assuming DMC retrieves the same
fraction of the correlation energy in each case, the BW will lie between the HF value
EHF
− (0)− EHF

− (kF ), which is too large, and the exact result Eexact
− (0)− Eexact

− (kF ).

Likewise, Slater-Jastrow DMC BWs are expected to be greater than Slater-Jastrow-
backflow DMC BWs.

To obtain an accurate BW, it is essential to retrieve a very large fraction of the
correlation energy in the DMC calculations, which explains why the inclusion of backflow
is so important.

The extent to which the BW is overestimated in HF theory grows with rs so that,
assuming DMC retrieves a constant fraction of the correlation energy, the DMC bands
become less accurate at low density.



Assessing the Accuracy of our DMC Calculations (II)

Extrapolating the VMC energy with different trial wave functions to zero variance
suggests that our DMC calculations retrieve more than 99% of the correlation energy,
and that the fraction retrieved is similar in both the ground and excited states.

The free-electron BW is greater than or approximately equal to the exact BW. Hence the
error in the HF BW is less than or approximately equal to ∆EHF−∆E free = kF (1−2/π).

So the error in the DMC BW is less than 0.01kF (1−2/π) ≈ 0.007/rs for a ferromagnetic
HEG and less than about 0.01kF (1− 2/π) ≈ 0.005/rs for a paramagnetic HEG.

Since the BW falls off as r−2
s , the error is more significant at large rs.

In the worst case (the paramagnetic HEG at rs = 10 a.u.) this argument suggests that
DMC overestimates the BW by ∼ 9%. In the next-worse case (paramagnetic, rs = 5
a.u.), the BW is overestimated by ∼ 4%.

It is reasonable to assume that DMC underestimates the EM by a similar amount.



Paramagnetic Electronic Energy Band: rs = 1 a.u.
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Paramagnetic Electronic Energy Band: rs = 5 a.u.
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Paramagnetic Electronic Energy Band: rs = 10 a.u.
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Ferromagnetic Electronic Energy Band: rs = 1 a.u.
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Ferromagnetic Electronic Energy Band: rs = 5 a.u.
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Ferromagnetic Electronic Energy Band: rs = 10 a.u.
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Quasiparticle Effective Masses (I)
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Quasiparticle Effective Masses (I)
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Quasiparticle Effective Masses (I)
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Quasiparticle Effective Masses (II)

Paramagnetic HEG

• At rs = 1 a.u. the EM is slightly less than the bare electron mass, but at rs = 5 a.u.
the EM is significantly enhanced.

• EM does not continue to grow rapidly when the density is reduced beyond rs ' 5 a.u.

• DMC EMs are in quantitative agreement with experimental results of Tan et al.

Ferromagnetic HEG

• The EM decreases when the density is lowered. Our results therefore support the
qualitative conclusions of Padmanabhan et al.

• DMC EMs are in quantitative agreement with exp. results of Padmanabhan et al.



Conflict

Very recently, Holzmann et al.7 have carried out a VMC study of the 2D HEG EM.
Their EMs differ significantly from our DMC results.

They considered only additions of electrons immediately outside the Fermi surface.

They found substantial finite-size effects in the EM, which they corrected using an
approximate analytical expression, derived by considering the finite-size behaviour of the
discontinuity in the momentum density at the Fermi surface.

Our EMs do not suffer from these finite-size effects; if anything, our EMs show the
opposite trend with system size.

There is a much larger error in Holzmann et al.’s VMC results due to the finite fraction
of correlation energy retrieved than there is in our DMC results.

7 M. Holzmann, B. Bernu, V. Olevano, R. M. Martin, and D. M. Ceperley, Phys. Rev. B 79, 041308(R) (2009).



Momentum Density

Holzmann et al. derived an expression for the finite-size error in the momentum density.
Error is significant at the Fermi edge, but not elsewhere.
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Renormalisation factor : discontinuity Z at Fermi edge.
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Renormalisation Factor
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Finite-size effects predicted by Holzmann et al. are indeed present in Z.

Adding an electron introduces a spike of size ZN in the momentum density. So finite-size
correction to band evaluated by addition of an electron just outside kF is ∆ZNk2

F/2.

Should find significant finite-size effects in the energy band close to the Fermi surface.
Finite-size effects are less significant away from the Fermi surface.



Possible Reason For Disagreement?

Possible reason for the disagreement with Holzmann et al.: we used a fit to the entire
occupied (and part of the unoccupied) band to compute the EM. Therefore, pathological
behaviour at the Fermi surface has little effect on the fitted band.

Apparent objection: Fermi liquid theory is only concerned with excitations close to the
Fermi surface. It is therefore inappropriate to calculate the EM by examining excitations
over a wider range of k. These are not quasiparticle excitations.

Response: We have calculated the electronic energy band (describing electronic additions
and subtractions), not the quasiparticle band. The electronic band is an interesting and
useful quantity in its own right. Our data are well described by a quartic function over
the range of k for which we have data. The pathological behaviour of the QMC band
at kF due to (i) retrieving a finite fraction of the correlation energy and (ii) finite-size
effects has a negligible effect on the fitted band. According to Fermi liquid theory,
the quasiparticle band coincides with the electronic band at the Fermi surface and,
furthermore, the band is smooth at kF . We may therefore take the derivative of our
fitted electronic band at kF to obtain the EM.

Holzmann et al. added electrons close to the Fermi surface and corrected for finite-size
errors, but don’t seem to have considered the legacy of HF theory in the QMC band.



Conclusions

• Our data confirm that the EM of the paramagnetic HEG increases when the density
is lowered, while that of the ferromagnetic HEG decreases.

• Our ferromagnetic and paramagnetic EMs are in agreement with the experimental
results of Padmanabhan et al. and Tan et al., respectively.

• However, our results disagree with those of another QMC study. We believe this is
because the other QMC study only looked at excitations close to the Fermi surface.

Future work:

• Use the approach taken by Kwon et al. to calculate the Fermi liquid parameters.

• Padmanabhan et al. used a magnetic field to polarise the HEG. The field was mostly
in-plane (which has no effect on an ideal 2D HEG other than to spin-polarise it), but
a small perpendicular component may have affected their results. Study 2D HEG in
the presence of a magnetic field.
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