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Outline

• Model (one component quantum Coulomb gas)

• Phase diagram

• Wigner crystal melting

★Hexatic phase

★Microemulsion phase



• One component system of charges (e) interacting via a 
long-range 1/r potential in 2D

• Rigid background (total charge is neutral)

• Quantum effects included through the kinetic term

• No statistics (“Bolzmannons”) (distinguishable 
particles)
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Effective dimensionless parameters:

• Wigner-Seitz radius                with 

• Temperature dependent coupling

Units Rydberg 

The model (II)
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Small rs

weakly interacting regime
liquid

Large rs

strongly interacting regime
Wigner crystal



(some) Experimental realizations

• X. H. Zheng and R. Grieve (PRB 73, 064205 (2006), 
charged millimeter-sized steel balls

• Keim, Maret, and von Grunberg (cond-mat/0610332, 
PRL 95, 185502 (2005)), magnetically oriented 
colloids

• Quinn and Goree (PRE 64, 051404 (2001)), charged 
microspheres suspended in plasma

• Electrons on liquid helium (Grimes and Adams, 
1979) and in MOSFET.... they are fermions, but by 
studying our model (computationally easier) we can 
infer some properties also in the charge sector of 
electronic 2D systems (particularly at low density 
where statistics is less relevant)



Phase diagram 
(up to now)
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• In 2D there is a quasi-long range crystal 
order for 1/r (Mermin theorem: true long-range 
is forbidden by thermal fluctuations)

• Defects theory helps describing the lack of 
order. Type of defects: dislocations, 
disclinations, grain boundaries

Defects in the Wigner crystal

DISCLINATION

DISLOCATION



Melting of a 2D crystal according to the 
Kosterliz-Thouless transition

• Halperin and Nelson explain the melting as a two-step 
process: dislocation unbinding, and disclination unbinding

• Dislocation unbinding: crystal-to-hexatic transition (loss 
of translational order, a quasi long-range hexatic orientational 
order survives)

• Disclination unbinding: hexatic-to-liquid transition (loss 
of orientational order, isotropic liquid)

• The two phase transitions are second order and of KT 
type (namely the critical exponents can be determined 
universally)

• Classical one component plasma with 1/r shows 
hexatic phase sandwiched between crystal and liquid around 
Γ~123 (although there is no consensus)



T=0 melting with Coulomb interaction 
(microemulsion theory)

• Direct liquid-to-crystal first order transition with phase 
separation forbidden by the long-range Coulomb interaction 
and the rigid background. 

• Jamei, Kivelson and Spivak [Phys. Rev. Lett. 94, 056805 
(2005)] showed (with mean field techniques) that a 2D 
charged system does not make a direct transition from 
crystal to liquid

• A stripe phase between liquid and crystal has lower 
energy at the mean field level

• Other phases (like bubbles) are also possible. Alternating 
crystal and liquid patches with a finite characteristic length 
( “microemulsions”). For stripes, the mean field optimal width 
is [Jamei et al, and Ortix et al. PRB 75, 195107 (2007)]:

a exp (4π2e2σ/∆µ2
c)



Quantum Monte Carlo methods

• Finite T: Path Integral Monte Carlo (PIMC)

• T=0: Diffusion Monte Carlo (DMC)

• General properties of the two algorithms in the 
case of Bosons and Bolzmannons: no sign 
problem, so they are “formally” exact!

• With Bolzmannons, the PIMC sampling is even 
faster, no need to include permutations



Path integral MC

Thermal density matrix

Trotter decomposition

Partition function

Primitive action

ρ̂ = e−β(T̂+V̂ )

ρ̂ = lim
M→∞

[e−τ(T̂+V̂ )]M

Z =
∫

dR1 . . . dRMe−
PM

i=1 S(Ri−1,Ri,τ)

S(R0, R1, τ) = (R1 −R0)2/4λτ +
τ

2
(V (R0) + V (R1))

τ = β/M



Sampling the partition function

Each particle is a polymer

The trace implies close paths

The extension of the path is 
due to the quantum nature of 
the wave packet

The lower the temperature, 
the longer the polymer



Toward our QMC phase diagram
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PIMC phase diagram
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Hexatic order parameter

ϕ(ri) =
∑

<j>

ei6θij We found η~2 
(while in the KT η=1/4)

~1/rη



Structure factors



Order of the transitions
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Voronoi (crystal) rs=55



Voronoi (hexatic) rs=55



Voronoi (liquid) rs=55



Grain boundaries 
and disclination unbinding

• First order crystal-to-hexatic explained by grain 
boundaries (PRB 28, 178 (1983)) 

• Hexatic-to-liquid  “standard” KT            
(disclination unbinding)

rs=200



Diffusion MC

• Imaginary time evolution to project out the higher energy 
components of an initial state

• The initial state is called “trial wave function” and it is also 
used to guide particles during diffusion

• DMC more accurate/efficient than PIMC but potentially 
more biased by the trial wave function

• Liquid wave function

• Crystal wave function 

Ψliquid(R) = exp[−
∑

i<j

urpa(rij)]

Ψsolid(R) = Ψliquid(R) exp[−
∑

i

α(ri − Ii)2]



Ground state liquid-crystal transition

• We have established a much more accurate estimation of 
the transition at rs=66.5 (old reference S. De Palo, S.  
Conti, and S.  Moroni,  Phys. Rev. B 69, 035109 (2004).

• Accurate finite size corrections based on the method in 
S. Chiesa at al., Phys. Rev. Lett 97, 076404(2006)
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Where to look for 
inhomogeneous phases?



Metastable bubbles

PIMC  Very low T (< 10 micro Ry)



Non-homogeneous bubble phases

density contour plot

Bubbles not 
energetically 

favorable!

DMC  T=0



Stripes



Bubbles

By fitting different bubble 
sizes we estimate the 

surface tension
DMC T=0



Using microscopics and mean field

• From the dependence of the stripe and bubble energies on 
their size we can estimate the surface energy σ

• From the “pure” liquid and crystal calculations we can 
estimate the free energy of the homogeneous phases and the 
chemical potential μ

• We obtain: σ~1.5 µRyd/a.u., Δµ~59.8 µRyd

• This implies a mean field characteristic length

                                            ~ 

• The very small chemical potential difference 
between the two homogeneous phases makes the mean field 
characteristic length of microemulsion 
exceedingly large, impossible to see in any experimental 
setup or in simulations

a exp (4π2e2σ/∆µ2
c) exp(3 105)



Conclusions

We have established the outline of the phase diagram for a quantum one
component plasma with Coulomb interactions

We see a sandwiched region of hexatic phase where quantum effects are
marginal

Some discrepancy with KTHNY (order, critical exponents)
If inhomogeneous phases exist their characteristic length is larger than any

feasible experimental setup or simulation cell

Reference: PRL in press, and arXiv:0905.4515

Future work: inclusion of disorder, Bose and Fermi statistics


