Algorithm 000000000 Results 000000000 Continuing directions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quantum Monte Carlo in a discrete space

George Booth

July 29, 2009

Background	Algorithm	Results	Continuing directions
●00	00000000	00000000	
Slater Determina	nt Space		

- *N* HF spin-orbitals are chosen out of 2*M* spin-orbitals $\{\phi_1, \phi_2, ..., \phi_{2M}\}$
- Orthogonal and antisymmetric
- Complete space of determinants is finite, but exponentially growing in N and M

Full Configuration Interaction

• Iterative diagonalisation of the sparse Hamiltonian in this space gives the "Full Configuration Interation" (FCI) solution.

 Matrix elements between determinants a simple combination of one- and two-electron Hamiltonian integrals.

• Variationally minimised energy Eigenvalue - total basis set correlation energy captured.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background	Algorithm	Results	Continuing directions
00●	00000000	00000000	
Monte Carlo			

- Aim is to perform Monte Carlo simulation in the full space of determinants without *a priori* information.
- Due to the fundamental properties of the space, the Fermionic ground state is the lowest energy solution, so nodal surface should hopefully emerge naturally.
- This removes uncontrolled approximations, but introduces a basis-set dependence.
- "Exact", Size-consistent, Multireference and systematically improvable.

Movie shows the convergence of the algorithm.

D · .·	C I 1.1 I		
000	●00000000	00000000	000000
Background	Algorithm	Results	Continuing directions

- Derivation of algorithm I
 - Begin with imaginary-time TDSE

$$\frac{\partial \Psi}{\partial \tau} = -H\Psi \tag{1}$$

• Perform a long-time integration to project out ground state.

$$\Psi_0 = \lim_{\tau \to \infty} e^{-\tau (H - E_0)} D_0 \tag{2}$$

• Expressing wavefunction as linear combination of Slater Determinants ensures Fermionic solutions only.

$$\Psi(\tau) = \sum_{\mathbf{i}} C_{\mathbf{i}}(\tau) |D_{\mathbf{i}}\rangle \tag{3}$$

• Discretize amplitudes as a signed sum of walkers

$$C_{\mathbf{i}} \propto N_{\mathbf{i}} = \sum_{\alpha} s_{\alpha} \delta_{\mathbf{i}, \mathbf{i}_{\alpha}} \tag{4}$$

Background	Algorithm	Results	Continuing directions
000	00000000	00000000	
Derivation of	of algorithm II		

• Define K as $H - I \langle D_0 | H | D_0 \rangle$ to ensure positive diagonal elements and obtain:

$$-\frac{dC_{\mathbf{i}}}{d\tau} = \sum_{\mathbf{j}} (K_{\mathbf{ij}} - S\delta_{\mathbf{ij}})C_{\mathbf{j}}$$
$$= (K_{\mathbf{ii}} - S)C_{\mathbf{i}} + \sum_{\mathbf{j}\neq\mathbf{i}} K_{\mathbf{ij}}C_{\mathbf{j}}$$

where S is an arbitrary energy "shift" which controls rate of population change. If we have

$$\sum_{j} \kappa_{ij} C_{j} = SC_{i}$$
 (5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

then we are at our eigenstate.

Background	Algorithm	Results	Continuing directions
000	00●000000	00000000	
Spawing step			

• Each iteration, for each particle, select coupled determinant $D_{\mathbf{j}}$ with normalised probability $p_{\text{gen}}(\mathbf{j}|\mathbf{i})$ and attempt to spawn a child there with probability

$$p_{s}(\mathbf{j}|\mathbf{i}) = -\frac{\delta\tau|K_{\mathbf{ij}}|}{p_{\text{gen}}(\mathbf{j}|\mathbf{i})}$$
(6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 Positive K_{ij} connections will flip the sign of the spawned walker w.r.t the parent

Background	Algorithm	Results	Continuing directions
000	00000000	00000000	000000
Death step			

• The particle attempts to die with probability

$$p_d(\mathbf{i}) = \delta \tau (K_{\mathbf{i}\mathbf{i}} - S) \tag{7}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• If we desire to keep the total population of walkers constant, we can periodically (A iterations) adjust the S "shift" value to raise it if there has been a net decrease in walkers over the time period, or lower it if there has been a gain, according to

$$S(\tau) = S(\tau - A\delta\tau) - \frac{\zeta}{A\delta\tau} \ln \frac{N_w(\tau)}{N_w(\tau - A\delta\tau)}$$
(8)

Background	Algorithm	Results	Continuing directions
000	00000000	00000000	
Projected energy			

We can calculate the energy in another way as the projection of $H|\Psi\rangle$ onto any wavefunction with overlap with the ground state.

$$\begin{split} E(\tau) &= \frac{\langle D_{\mathbf{0}} | H e^{-\tau H} | D_{\mathbf{0}} \rangle}{\langle D_{\mathbf{0}} | e^{-\tau H} | D_{\mathbf{0}} \rangle} \\ &= E_{\mathrm{HF}} + \sum_{\mathbf{j} \neq \mathbf{0}} \langle D_{\mathbf{j}} | H | D_{\mathbf{0}} \rangle \frac{C_{\mathbf{j}}(\tau)}{C_{\mathbf{0}}(\tau)} \\ &= E_{\mathrm{HF}} + \sum_{\mathbf{j} \neq \mathbf{0}} \langle D_{\mathbf{j}} | H | D_{\mathbf{0}} \rangle \frac{N_{\mathbf{j}}(\tau)}{N_{\mathbf{0}}(\tau)} \\ &= E_{\mathrm{HF}} + \sum_{\mathbf{j} \in \{\mathrm{Sings, Doubs}\}} \langle D_{\mathbf{j}} | H | D_{\mathbf{0}} \rangle \frac{N_{\mathbf{j}}(\tau)}{N_{\mathbf{0}}(\tau)} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background	Algorithm	Results	Continuing directions
000	000000000	00000000	
Walker Annihilati	ion		

- Walkers of opposite sign on the same determinant are annihilated after each iteration.
- This interaction between positive and negative walkers crucial in breaking symmetry between $\pm \Psi$ states.
- Without this, we observe the classic exponential decay of signal to noise ratio, seen in say nodal-release DMC, due to the dreaded 'sign problem'
- Walker annihilation has been studied previously in real spaces, but difficulty in achieving exact cancellation means this was not entirely successful.
- Annihilation effects give rise to a plateau in the particle growth indicates critical sampling needed for sign-coherence of walkers and difficulty to converge energy of system

No annihilation vs. Annihilation movies.

Background	Algorithm	Results	Continuing directions
000	000000●00	00000000	
Typical walker g	rowth		

◆□▶ ◆部▶ ◆吉▶ ◆吉▶ 三臣 - わへで

- Whole space become sign-coherent over the course of the plateau tested by looking at ACF
- Simplest space with sign-problem is a 3-cycle

- Determinants which are weakly coupled (high energy or small matrix elements) to the rest of the space do not pose a problem.
- There is also no need to identify these determinants a priori

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background	Algorithm	Results	Continuing directions
000	00000000	00000000	000000
Timesten Errors			

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ へ ⊙

Algorithm

Results

Continuing directions

New molecular energies

System	(N,M)	$N_{ m FCI}/10^6$	$N_{c}/10^{6}$	f _c	$E_{ m total}$	$E_{\rm CCSD(T)}$
Be: cc-V5Z	(4,91)	2.11	0	0	-14.64638(2)	-14.64629
CN: cc-pVDZ	(9,26)	246	173	0.704	-92.4938(3)	-92.49164
HF: cc-pCVDZ	(10,23)	283	0.998	0.0035	-100.27098(3)	-100.27044
CH ₄ : cc-pVDZ	(8,33)	419	377	0.898	-40.38752(1)	-40.38974
CO: cc-pVDZ	(10,26)	1,080	777	0.719	-113.05644(4)	-113.05497
H ₂ O: cc-pCVDZ	(10,28)	2,410	47.4	0.0196	-76.28091(3)	-76.28028
O ₂ : cc-pVDZ	(12,26)	5,409	2,651	0.490	-149.9875(2)	-149.98562
NaH: cc-pCVDZ	(12,32)	205,300	63.8	0.00031	-162.6090(1)	-162.60901
Mg ²⁺ : cc-pV5Z	(10,95)	420×10^{6}	139	3.3×10^{-7}	-198.8878(3)	-198.88779

• It can be seen that in all cases, the number of walkers needed to achieve convergence is smaller than the full size of the space.

Algorithm 000000000 Results

Continuing directions

Neon Atom

Basis Set	Orbitals	$N_{ m FCI}/10^6$	$N_{c}/10^{6}$	$f_c / 10^{-3}$	$E_{ m corr}$
VDZ	14	0.502	0	0	0.19211(4)
CVDZ	18	9.19	0	0	0.23365(3)
AVDZ	23	142	0.248	1.7	0.21510(3)
VTZ	30	2540	0.506	0.199	0.28341(9)
CVTZ	43	116,000	2.3	0.0198	0.33628(2)
AVTZ	46	235,000	338	1.43	0.2925(4)
VQZ	55	1.51×10^{6}	681	0.451	0.3347(10)
CVQZ	84	$119{ imes}10^6$	2200	0.0185	0.3691(1)
Extrap.					0.3930
Exact					0.3905

• The fact that f_c is relatively constant for a given basis set family indicates exponential scaling.

Background 000	Algorithm 00000000	Results	Continuing directions
HF Binding Curve I			

Algorithm 00000000 Results

Continuing directions

HF Binding Curve II

E 990

Algorithm 000000000 Results

Continuing directions

Binding Plateaus

₹ 9Q@

Algorithm 000000000 Results

Continuing directions

Ionisation Potentials I

SQC

æ

Background	Algorithm	Results	Continuing directio
000	00000000	000000000	000000

Ionisation Potentials II

	DMC	CCSD(T)	"Best" FCIMC	Extrap. FCIMC
A.M.Err (mH)	4.39	2.45	2.04	1.76
Max Err (mH)	9.58	5.65	4.369	3.428

- Results are work in progress
- If error > 0, cation is not as well described as neutral species and vice versa (same for DMC values)
- Generally, bottleneck is storage of N⁴ integrals simple computational problem
- Errors are simply due to basis set incompleteness, which are not optimized for this problem.
- Note the ease for the Na atom space more than 10^{15} also allowed calculation of K.

Materials Transactions, 47, 11 (2006), Yasuhara JCP 124 224104 (2006), Drummond et al. Theor. Chem. Acc. (1997), Takewaki

Algorithm 000000000 Results

Continuing directions

Current Code Scaling

500

æ

Algorithm 000000000 Results 000000000 Continuing directions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Spin-coupled determinant pairs

- Swap alpha and beta electrons
- FCI amplitude equal up to a sign change
- Create objects which are (anti-)symmetric combination of open-shell determinants
- Space reduced by a factor tending to two
- Plateau height is also reduced by same factor
- Also spin-contamination in instantaneous energy value is reduced
- Partway towards working in a space of CSFs

Background	Algorithm	Results	Continuing directions
000	00000000	00000000	
Orbital basis	rotations		

- Energies invariant w.r.t. rotation of initial orbitals
- We can use this to hopefully find orbitals which are better suited to the algorithm and achieving sign-coherence of particles
- This will hopefully lower plateaus heights
- Various orbital localizations attempts, as well as Kohn-Sham orbitals and Bruckner orbitals.
- Some limited success with Edminsten-Reudenburg localization (Maximize (*ii*|*ii*) orbital self-repulsion), but still no consistent scheme.
- Ultimate aim is to reduce not just prefactor further, but also scaling!

Background	Algorithm	Results	Continuing directions	
000	00000000	00000000		
Plane wave basis				

- Interface to use VASP produced orbitals and integrals
- k-point expansion of energy for LiH similar to MP2 from 1x1x2 supercell
- Hoping to provide benchmark result for periodic systems
- LiH 2x2x2 supercell 8 LiH pairs (16 electrons)
- Pseudopotential on Li 1s orbital and PAW method used

Truncated Level	Orbitals	Plateau height/10 ⁶	$N_{ m CI}/10^6$	f _c
CISDTQ	40	162	348	0.465
CISDTQ5	40	6,152	9,374	0.646
CISDTQ56	40	97,040	162,300	0.598
CISDTQ	51	499	1,151	0.433
CISDTQ	64	1,430	3,344	0.428

Algorithm 000000000 Results 000000000 Continuing directions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Approximate schemes

- Perturbative approximations for high energy virtuals
- CASSCF
- Other partitioning scheme for the space
- Dominant determinants as a nodal surface for DMC (Norbert and Priyanka)
- CCMC (Alex Thom)

Algorithm 000000000 Results 000000000 Continuing directions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Systems focus

- Application to more systems!
- Have recently found energy for C_2 cc-pVTZ basis set
- Binding curves with FCI accuracy for first row diatomics with extrapolation to complete basis set
- Multireference transistion metal dimers, Hubbard models ...

Algorithm 000000000 Results 000000000 Continuing directions 00000

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Acknowledgements

- Ali Alavi
- Alex Thom, James Spencer, Deirdre Cleland, Andreas Grueneis
- Mike Towler
- Funding: EPSRC