Quantum Monte Carlo in a discrete space

George Booth

July 29, 2009

Slater Determinant Space

- N HF spin-orbitals are chosen out of $2 M$ spin-orbitals $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{2 M}\right\}$
- Orthogonal and antisymmetric
- Complete space of determinants is finite, but exponentially growing in N and M

Full Configuration Interaction

- Iterative diagonalisation of the sparse Hamiltonian in this space gives the "Full Configuration Interation" (FCI) solution.
- Matrix elements between determinants a simple combination of one- and two-electron Hamiltonian integrals.
- Variationally minimised energy Eigenvalue - total basis set correlation energy captured.

Monte Carlo

- Aim is to perform Monte Carlo simulation in the full space of determinants without a priori information.
- Due to the fundamental properties of the space, the Fermionic ground state is the lowest energy solution, so nodal surface should hopefully emerge naturally.
- This removes uncontrolled approximations, but introduces a basis-set dependence.
- "Exact", Size-consistent, Multireference and systematically improvable.

Movie shows the convergence of the algorithm.

Derivation of algorithm I

- Begin with imaginary-time TDSE

$$
\begin{equation*}
\frac{\partial \Psi}{\partial \tau}=-H \Psi \tag{1}
\end{equation*}
$$

- Perform a long-time integration to project out ground state.

$$
\begin{equation*}
\Psi_{0}=\lim _{\tau \rightarrow \infty} e^{-\tau\left(H-E_{0}\right)} D_{0} \tag{2}
\end{equation*}
$$

- Expressing wavefunction as linear combination of Slater Determinants ensures Fermionic solutions only.

$$
\begin{equation*}
\Psi(\tau)=\sum_{\mathbf{i}} C_{\mathbf{i}}(\tau)\left|D_{\mathbf{i}}\right\rangle \tag{3}
\end{equation*}
$$

- Discretize amplitudes as a signed sum of walkers

$$
\begin{equation*}
C_{\mathbf{i}} \propto N_{\mathbf{i}}=\sum_{\alpha} s_{\alpha} \delta_{\mathbf{i}, \mathbf{i}_{\alpha}} \tag{4}
\end{equation*}
$$

Derivation of algorithm II

- Define K as $H-I\left\langle D_{0}\right| H\left|D_{0}\right\rangle$ to ensure positive diagonal elements and obtain:

$$
\begin{aligned}
-\frac{d C_{\mathbf{i}}}{d \tau} & =\sum_{\mathbf{j}}\left(K_{\mathrm{ij}}-S \delta_{\mathbf{i j}}\right) C_{\mathbf{j}} \\
& =\left(K_{\mathbf{i j}}-S\right) C_{\mathbf{i}}+\sum_{\mathbf{j} \neq \mathbf{i}} K_{\mathrm{ij}} C_{\mathbf{j}}
\end{aligned}
$$

where S is an arbitrary energy "shift" which controls rate of population change. If we have

$$
\begin{equation*}
\sum_{\mathrm{j}} K_{\mathrm{ij}} C_{\mathrm{j}}=S C_{\mathrm{i}} \tag{5}
\end{equation*}
$$

then we are at our eigenstate.

Spawing step

- Each iteration, for each particle, select coupled determinant $D_{\mathbf{j}}$ with normalised probability $p_{\text {gen }}(\mathbf{j} \mid \mathbf{i})$ and attempt to spawn a child there with probability

$$
\begin{equation*}
p_{s}(\mathbf{j} \mid \mathbf{i})=-\frac{\delta \tau\left|K_{\mathrm{ij}}\right|}{p_{\operatorname{gen}}(\mathbf{j} \mid \mathbf{i})} \tag{6}
\end{equation*}
$$

- Positive K_{ij} connections will flip the sign of the spawned walker w.r.t the parent

Death step

- The particle attempts to die with probability

$$
\begin{equation*}
p_{d}(\mathbf{i})=\delta \tau\left(K_{\mathbf{i i}}-S\right) \tag{7}
\end{equation*}
$$

- If we desire to keep the total population of walkers constant, we can periodically (A iterations) adjust the S "shift" value to raise it if there has been a net decrease in walkers over the time period, or lower it if there has been a gain, according to

$$
\begin{equation*}
S(\tau)=S(\tau-A \delta \tau)-\frac{\zeta}{A \delta \tau} \ln \frac{N_{w}(\tau)}{N_{w}(\tau-A \delta \tau)} \tag{8}
\end{equation*}
$$

Projected energy

We can calculate the energy in another way as the projection of $H|\Psi\rangle$ onto any wavefuntion with overlap with the ground state.

$$
\begin{aligned}
E(\tau) & =\frac{\left\langle D_{\mathbf{0}}\right| H e^{-\tau H}\left|D_{\mathbf{0}}\right\rangle}{\left\langle D_{0}\right| e^{-\tau H}\left|D_{\mathbf{0}}\right\rangle} \\
& =E_{\mathrm{HF}}+\sum_{\mathbf{j} \neq \mathbf{0}}\left\langle D_{\mathbf{j}}\right| H\left|D_{\mathbf{0}}\right\rangle \frac{C_{\mathbf{j}}(\tau)}{C_{\mathbf{0}}(\tau)} \\
& =E_{\mathrm{HF}}+\sum_{\mathbf{j} \neq \mathbf{0}}\left\langle D_{\mathbf{j}}\right| H\left|D_{\mathbf{0}}\right\rangle \frac{N_{\mathbf{j}}(\tau)}{N_{\mathbf{0}(\tau)}} \\
& =E_{\mathrm{HF}}+\sum_{\mathbf{j} \in\{\text { Sings, Doubs }\}}\left\langle D_{\mathbf{j}}\right| H\left|D_{\mathbf{0}}\right\rangle \frac{N_{\mathbf{j}}(\tau)}{N_{\mathbf{0}}(\tau)}
\end{aligned}
$$

Walker Annihilation

- Walkers of opposite sign on the same determinant are annihilated after each iteration.
- This interaction between positive and negative walkers crucial in breaking symmetry between $\pm \Psi$ states.
- Without this, we observe the classic exponential decay of signal to noise ratio, seen in say nodal-release DMC, due to the dreaded 'sign problem'
- Walker annihilation has been studied previously in real spaces, but difficulty in achieving exact cancellation means this was not entirely successful.
- Annihilation effects give rise to a plateau in the particle growth - indicates critical sampling needed for sign-coherence of walkers and difficulty to converge energy of system

No annihilation vs. Annihilation movies.

Typical walker growth

Sign-Coherence

- Whole space become sign-coherent over the course of the plateau - tested by looking at ACF
- Simplest space with sign-problem is a 3-cycle

- Determinants which are weakly coupled (high energy or small matrix elements) to the rest of the space do not pose a problem.
- There is also no need to identify these determinants a priori

Timestep Errors

Convergence of energy for water molecule

New molecular energies

System	(N, M)	$N_{F C I} / 10^{6}$	$N_{c} / 10^{6}$	f_{c}	$E_{\text {total }}$	$E_{\mathrm{CCSD}(\mathrm{T})}$
Be: cc-V5Z	$(4,91)$	2.11	0	0	$-14.64638(2)$	-14.64629
CN: cc-pVDZ	$(9,26)$	246	173	0.704	$-92.4938(3)$	-92.49164
HF: cc-pCVDZ	$(10,23)$	283	0.998	0.0035	$-100.27098(3)$	-100.27044
CH $:$ cc-pVDZ	$(8,33)$	419	377	0.898	$-40.38752(1)$	-40.38974
CO: cc-pVDZ	$(10,26)$	1,080	777	0.719	$-113.05644(4)$	-113.05497
$\mathrm{H}_{2} \mathrm{O}:$ cc-pCVDZ	$(10,28)$	2,410	47.4	0.0196	$-76.28091(3)$	-76.28028
$\mathrm{O}_{2}:$ cc-pVDZ	$(12,26)$	5,409	2,651	0.490	$-149.9875(2)$	-149.98562
$\mathrm{NaH}^{\text {c cc-pCVDZ }}$	$(12,32)$	205,300	63.8	0.00031	$-162.6090(1)$	-162.60901
$\mathrm{Mg}^{2+}:$ cc-pV5Z	$(10,95)$	420×10^{6}	139	3.3×10^{-7}	$-198.8878(3)$	-198.88779

- It can be seen that in all cases, the number of walkers needed to achieve convergence is smaller than the full size of the space.

Neon Atom

Basis Set	Orbitals	$N_{\text {FCI }} / 10^{6}$	$N_{c} / 10^{6}$	$f_{c} / 10^{-3}$	$E_{\text {corr }}$
VDZ	14	0.502	0	0	$0.19211(4)$
CVDZ	18	9.19	0	0	$0.23365(3)$
AVDZ	23	142	0.248	1.7	$0.21510(3)$
VTZ	30	2540	0.506	0.199	$0.28341(9)$
CVTZ	43	116,000	2.3	0.0198	$0.33628(2)$
AVTZ	46	235,000	338	1.43	$0.2925(4)$
VQZ	55	1.51×10^{6}	681	0.451	$0.3347(10)$
CVQZ	84	119×10^{6}	2200	0.0185	$0.3691(1)$
Extrap.					0.3930
Exact					0.3905

- The fact that f_{c} is relatively constant for a given basis set family indicates exponential scaling.

HF Binding Curve I

HF Binding Curve II

Binding Plateaus

Ionisation Potentials I

Ionisation Potentials II

	DMC	CCSD (T)	"Best" FCIMC	Extrap. FCIMC
A.M.Err (mH)	4.39	2.45	2.04	1.76
Max $\operatorname{Err}(\mathrm{mH})$	9.58	5.65	4.369	3.428

- Results are work in progress
- If error >0, cation is not as well described as neutral species and vice versa (same for DMC values)
- Generally, bottleneck is storage of N^{4} integrals - simple computational problem
- Errors are simply due to basis set incompleteness, which are not optimized for this problem.
- Note the ease for the Na atom - space more than 10^{15} - also allowed calculation of K .

Materials Transactions, 47, 11 (2006), Yasuhara
JCP 124224104 (2006), Drummond et al.
Theor. Chem. Acc. (1997), Takewaki

Current Code Scaling

Spin-coupled determinant pairs

- Swap alpha and beta electrons
- FCI amplitude equal up to a sign change
- Create objects which are (anti-)symmetric combination of open-shell determinants
- Space reduced by a factor tending to two
- Plateau height is also reduced by same factor
- Also spin-contamination in instantaneous energy value is reduced
- Partway towards working in a space of CSFs

Orbital basis rotations

- Energies invariant w.r.t. rotation of initial orbitals
- We can use this to hopefully find orbitals which are better suited to the algorithm and achieving sign-coherence of particles
- This will hopefully lower plateaus heights
- Various orbital localizations attempts, as well as Kohn-Sham orbitals and Bruckner orbitals.
- Some limited success with Edminsten-Reudenburg localization (Maximize $\langle i i \mid i i\rangle$ orbital self-repulsion), but still no consistent scheme.
- Ultimate aim is to reduce not just prefactor further, but also scaling!

Plane wave basis

- Interface to use VASP produced orbitals and integrals
- k-point expansion of energy for LiH similar to MP2 from $1 \times 1 \times 2$ supercell
- Hoping to provide benchmark result for periodic systems
- LiH $2 \times 2 \times 2$ supercell -8 LiH pairs (16 electrons)
- Pseudopotential on Li 1s orbital and PAW method used

Truncated Level	Orbitals	Plateau height $/ 10^{6}$	$N_{\mathrm{CI}} / 10^{6}$	f_{c}
CISDTQ	40	162	348	0.465
CISDTQ5	40	6,152	9,374	0.646
CISDTQ56	40	97,040	162,300	0.598
CISDTQ	51	499	1,151	0.433
CISDTQ	64	1,430	3,344	0.428

Approximate schemes

- Perturbative approximations for high energy virtuals
- CASSCF
- Other partitioning scheme for the space
- Dominant determinants as a nodal surface for DMC (Norbert and Priyanka)
- CCMC (Alex Thom)

Systems focus

- Application to more systems!
- Have recently found energy for C_{2} cc-pVTZ basis set
- Binding curves with FCl accuracy for first row diatomics with extrapolation to complete basis set
- Multireference transistion metal dimers, Hubbard models ...

Acknowledgements

- Ali Alavi
- Alex Thom, James Spencer, Deirdre Cleland, Andreas Grueneis
- Mike Towler
- Funding: EPSRC

