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Slater Determinant Space

• N HF spin-orbitals are chosen out of 2M spin-orbitals
{φ1, φ2, ..., φ2M}

• Orthogonal and antisymmetric

• Complete space of determinants is finite, but exponentially
growing in N and M
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Full Configuration Interaction

• Iterative diagonalisation of the sparse Hamiltonian in this
space gives the ”Full Configuration Interation” (FCI) solution.

• Matrix elements between determinants a sim-
ple combination of one- and two-electron Hamiltonian integrals.

• Variationally minimised energy Eigenvalue - total basis set
correlation energy captured.
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Monte Carlo

• Aim is to perform Monte Carlo simulation in the full space of
determinants without a priori information.

• Due to the fundamental properties of the space, the Fermionic
ground state is the lowest energy solution, so nodal surface
should hopefully emerge naturally.

• This removes uncontrolled approximations, but introduces a
basis-set dependence.

• “Exact”, Size-consistent, Multireference and systematically
improvable.

Movie shows the convergence of the algorithm.
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Derivation of algorithm I

• Begin with imaginary-time TDSE

∂Ψ

∂τ
= −HΨ (1)

• Perform a long-time integration to project out ground state.

Ψ0 = lim
τ→∞

e−τ(H−E0)D0 (2)

• Expressing wavefunction as linear combination of Slater
Determinants ensures Fermionic solutions only.

Ψ(τ) =
∑

i

Ci(τ)|Di〉 (3)

• Discretize amplitudes as a signed sum of walkers

Ci ∝ Ni =
∑

α

sαδi,iα (4)
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Derivation of algorithm II

• Define K as H − I 〈D0|H|D0〉 to ensure positive diagonal
elements and obtain:

−
dCi

dτ
=

∑

j

(Kij − Sδij)Cj

= (Kii − S)Ci +
∑

j6=i

KijCj

where S is an arbitrary energy “shift” which controls rate of
population change. If we have

∑

j

KijCj = SCi (5)

then we are at our eigenstate.
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Spawing step

• Each iteration, for each particle, select coupled determinant
Dj with normalised probability pgen(j|i) and attempt to spawn
a child there with probability

ps(j|i) = −
δτ |Kij|

pgen(j|i)
(6)

• Positive Kij connections will flip the sign of the spawned
walker w.r.t the parent
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Death step

• The particle attempts to die with probability

pd(i) = δτ(Kii − S) (7)

• If we desire to keep the total population of walkers constant,
we can periodically (A iterations) adjust the S “shift” value to
raise it if there has been a net decrease in walkers over the
time period, or lower it if there has been a gain, according to

S(τ) = S(τ − Aδτ) −
ζ

Aδτ
ln

Nw (τ)

Nw (τ − Aδτ)
(8)
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Projected energy

We can calculate the energy in another way as the projection of
H|Ψ〉 onto any wavefuntion with overlap with the ground state.

E (τ) =
〈D0|He−τH |D0〉

〈D0|e−τH |D0〉

= EHF +
∑

j6=0

〈Dj|H|D0〉
Cj(τ)

C0(τ)

= EHF +
∑

j6=0

〈Dj|H|D0〉
Nj(τ)

N0(τ)

= EHF +
∑

j∈{Sings, Doubs}

〈Dj|H|D0〉
Nj(τ)

N0(τ)
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Walker Annihilation

• Walkers of opposite sign on the same determinant are
annihilated after each iteration.

• This interaction between positive and negative walkers crucial
in breaking symmetry between ±Ψ states.

• Without this, we observe the classic exponential decay of
signal to noise ratio, seen in say nodal-release DMC, due to
the dreaded ’sign problem’

• Walker annihilation has been studied previously in real spaces,
but difficulty in achieving exact cancellation means this was
not entirely successful.

• Annihilation effects give rise to a plateau in the particle
growth - indicates critical sampling needed for sign-coherence
of walkers and difficulty to converge energy of system

No annihilation vs. Annihilation movies.
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Typical walker growth
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Sign-Coherence

• Whole space become sign-coherent over the course of the
plateau - tested by looking at ACF

• Simplest space with sign-problem is a 3-cycle
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• Determinants which are weakly coupled (high energy or small
matrix elements) to the rest of the space do not pose a
problem.

• There is also no need to identify these determinants a priori
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Timestep Errors
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Convergence of energy for water molecule
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New molecular energies

System (N,M) NFCI/106 Nc/106 fc Etotal ECCSD(T)

Be: cc-V5Z (4,91) 2.11 0 0 -14.64638(2) -14.64629
CN: cc-pVDZ (9,26) 246 173 0.704 -92.4938(3) -92.49164
HF: cc-pCVDZ (10,23) 283 0.998 0.0035 -100.27098(3) -100.27044
CH4: cc-pVDZ (8,33) 419 377 0.898 -40.38752(1) -40.38974
CO: cc-pVDZ (10,26) 1,080 777 0.719 -113.05644(4) -113.05497
H2O: cc-pCVDZ (10,28) 2,410 47.4 0.0196 -76.28091(3) -76.28028
O2: cc-pVDZ (12,26) 5,409 2,651 0.490 -149.9875(2) -149.98562
NaH: cc-pCVDZ (12,32) 205,300 63.8 0.00031 -162.6090(1) -162.60901
Mg2+: cc-pV5Z (10,95) 420×106 139 3.3×10−7 -198.8878(3) -198.88779

• It can be seen that in all cases, the number of walkers needed
to achieve convergence is smaller than the full size of the
space.
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Neon Atom

Basis Set Orbitals NFCI/106 Nc/106 fc/10−3 Ecorr

VDZ 14 0.502 0 0 0.19211(4)
CVDZ 18 9.19 0 0 0.23365(3)
AVDZ 23 142 0.248 1.7 0.21510(3)
VTZ 30 2540 0.506 0.199 0.28341(9)
CVTZ 43 116,000 2.3 0.0198 0.33628(2)
AVTZ 46 235,000 338 1.43 0.2925(4)
VQZ 55 1.51×106 681 0.451 0.3347(10)
CVQZ 84 119×106 2200 0.0185 0.3691(1)
Extrap. 0.3930
Exact 0.3905

• The fact that fc is relatively constant for a given basis set
family indicates exponential scaling.
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HF Binding Curve I
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HF Binding Curve II
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Binding Plateaus
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Ionisation Potentials I
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Ionisation Potentials II

DMC CCSD(T) “Best” FCIMC Extrap. FCIMC

A.M.Err (mH) 4.39 2.45 2.04 1.76

Max Err (mH) 9.58 5.65 4.369 3.428

• Results are work in progress
• If error > 0, cation is not as well described as neutral species

and vice versa (same for DMC values)
• Generally, bottleneck is storage of N4 integrals - simple

computational problem
• Errors are simply due to basis set incompleteness, which are

not optimized for this problem.
• Note the ease for the Na atom - space more than 1015 - also

allowed calculation of K.

Materials Transactions, 47, 11 (2006), Yasuhara

JCP 124 224104 (2006), Drummond et al.

Theor. Chem. Acc. (1997), Takewaki
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Current Code Scaling
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Spin-coupled determinant pairs

• Swap alpha and beta electrons

• FCI amplitude equal up to a sign change

• Create objects which are (anti-)symmetric combination of
open-shell determinants

• Space reduced by a factor tending to two

• Plateau height is also reduced by same factor

• Also spin-contamination in instantaneous energy value is
reduced

• Partway towards working in a space of CSFs
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Orbital basis rotations

• Energies invariant w.r.t. rotation of initial orbitals

• We can use this to hopefully find orbitals which are better
suited to the algorithm and achieving sign-coherence of
particles

• This will hopefully lower plateaus heights

• Various orbital localizations attempts, as well as Kohn-Sham
orbitals and Bruckner orbitals.

• Some limited success with Edminsten-Reudenburg localization
(Maximize 〈ii |ii〉 orbital self-repulsion), but still no consistent
scheme.

• Ultimate aim is to reduce not just prefactor further, but also
scaling!
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Plane wave basis

• Interface to use VASP produced orbitals and integrals

• k-point expansion of energy for LiH similar to MP2 from
1x1x2 supercell

• Hoping to provide benchmark result for periodic systems

• LiH 2x2x2 supercell - 8 LiH pairs (16 electrons)

• Pseudopotential on Li 1s orbital and PAW method used

Truncated Level Orbitals Plateau height/106 NCI/106 fc

CISDTQ 40 162 348 0.465
CISDTQ5 40 6,152 9,374 0.646
CISDTQ56 40 97,040 162,300 0.598
CISDTQ 51 499 1,151 0.433
CISDTQ 64 1,430 3,344 0.428
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Approximate schemes

• Perturbative approximations for high energy virtuals

• CASSCF

• Other partitioning scheme for the space

• Dominant determinants as a nodal surface for DMC (Norbert
and Priyanka)

• CCMC (Alex Thom)
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Systems focus

• Application to more systems!

• Have recently found energy for C2 cc-pVTZ basis set

• Binding curves with FCI accuracy for first row diatomics with
extrapolation to complete basis set

• Multireference transistion metal dimers, Hubbard models ...
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