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» Support
- DOE
« Codes
— PWSCF PARSEC & RGWBS DFT, GW-BSE, TDLDA
— CASINO QMC %
« Computational support
— NCCS at ORNL
— NERSC
— LLNL
— TACC

*Thanks A. J. Williamson, R. J. Needs, N. Drummond, M. Towler, J. Kim and M. Kalos



DMC for fermions

Ceperley Alder PRL 1980
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We use CASINO 2.1

Cambridge Quantum Monte Carlo Code ‘
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This is a very demanding test for DMC
Total energy differences require cancelation of errors on 0.01% or more



_evels of approximation of GW methods:

M . b Hybertsen & Louie (1985
DFT Z — LIC y ( )
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G,W, approximation 2 = i(G oWy DelSoleetal. (1994)

Tiago et. al (2006)

GoW, + vertex: G W, approximation > = iGoWplo
Self-consistent: GW approximation 2 = iGW
(W =V+VPW
Hedin’s equations P = —iGGI
> = 1GI'w
| T =1+4+35GGr

G,W, and G,W; approximations rely on DFT as a “good starting point”.
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Eigenvalue problem:
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= Many-body expansion of the electron-hole propagator.

» Dynamics of electron-hole excitation obtained by solving the Bethe-
Salpeter equation (BSE).

= Requires knowledge of quasiparticle orbitals (get from GW).
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« Stoke’s shifts estimated as max 0.2 eV from DFT not included in above data
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Scissors (eigen-values) self-consistency seems
essential in GW/BSE.
DMC gives higher (~0.8 eV ) triplet energies
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ASCF (DFT) is still not far from experimental data.
GW requires self-consistency
QMC systematically underestimates EA.




« GW-BSE

— Scissors self-consistent improves agreement with
experiment

— Has the approach predictive power in general?
« ASCF and TDLDA
— Agree with experiment in fullerenes
— They are known to disagree in carbon nanotubes
- QMC
— Cancelations of the relative systematic errors < 10-5

— Need compact multiconfigurational expansions &/or
orbital optimization for large systems

— Pseudopotential evaluation related errors are small
« Experiment
— Experiments in single molecules

http://arxiv.org/abs/0803.0560
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« The Kohn-Sham formulation of DFT establishes
an equivalence between interacting and non
interacting densities.

* No other property of the interacting ground state
wave-function is in principle retained.

* However, Kohn-Sham wave-functions are used
as starting point for methods that go beyond
DFT such as QMC or GW-BSE etc.

Are Kohn and Sham wave-functions any good?

Do they retain any physical property beyond the
density?



Densities Wave-functions

non interacting
-representabl

non interacting
v-representable

For non-degenerate systems there is at most one Kohn-Sham wave-function
with the interacting density



Densities Wave-functions

non interacting
-representabl

non interacting
v-representable

For non-degenerate systems there is at most one Kohn-Sham wave-function
with the interacting density

Optimizing other properties thus requires to change the density



Densities Wave-functions

non interacting

Jepreseniab) non interacting
v-representable
ﬁf{ (I‘) — UH [P(I‘)] Reboredo & Kent PRB (2008)

Optimizing other properties thus requires to change the density



V = 8y cos[an(X-X")] cos[an(y-y')] R
V
o and y control the shape and strength of V /

V' is repulsive for |a| < 1/2

H expanded in the first 300 non-interacting eigenfunctions with the ground
state symmetry. All integrals done analytically. Converged results
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K, = % / dr [7(r) - | Kohn-Sham DFT |
ATi 1) = [ e o) - ) S
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Wave-functions

o :
non interacting

Different properties imply different cost functions and different potentials
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A density-density functional must be found to optimize other properties



K,-= / dr [p(r) - p(z)]
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FullCl (V=0) Exact Kohn-Sham
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K, = / dS |0 (R)* @
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Max Projection Min on nodes

Effective potentials depend strongly on the many-body property retained
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Exact Kohn-Sham
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For this model exact DFT is

the worst description of the nodes !







Removing the kink in ¥ moves the node in the right direction



«— Number of configurations

i\;: \IJO (R) ‘IJT (R) < Trial Wave-Function

f(R) =

Fixed-Node Ground State Wave-Function

Distribution of walkers

We know ¥7(R), N. and f(R)

We want to know Yo(R) and VT

D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980)




Uy(R) = ¢ /(B Z A @ (R) | Fixed-Node Ground State

Wave-Function Projectors

DMC sampling

[ arsR) = )

....can be obtained directly by sampling
over the walker distribution.
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An expansion of the Ground-State Wave-Function can be
obtained from DMC with full Cl quality



Ns = 200 | \IJT (R) starting trial wave function: anything

\ 4

standard DMC accumulation |<g= How do we simplify the wave-function ?
< Ap >= Z &n(Ri) L y(Ry) How do we construct a faster one?

<A > =) GR)FRY)

(sample of N, configurations)

\ 4

New trial wave-function

Ur(R)= Wo(R)

N.=aN

S

s a>1




Conjecture (2) Noise in the coefficients plays the role of a temperature in a simulated
annealing approach. Good fluctuations are reinforced bad ones are abandoned.

Rp =log[1— < U|Wr > /(||| Wr])]

Statistical Improvement
(good nodes)
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Conjecture (3) Removing the high energy contribution removes

1)

3)

the kink at the node and improves it

Z ATN (:DT?

d (R) Are non- mteractlng eigen-functions:
n — increasing kinetic energy
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Chi-Squared distribution

2 Z [ni — N.Qip(R;)])” Relative errors have the same
NCQ@(RZ-) Impact for every bin

How close are two probability densities?

_ [ g ladR) — p(R)]”
fi = [ a0

ot

/ H Ur(R)¥U7r(R) — f(R)r '
dR —— x O[f(R)—n]
NTCIIIT(R)‘IIT(R)

This cost function extended to the full Hilbert space by the | | and the 6] ]
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Any expression of the
Ground State Wave-Function oce

« Single determinant . , 0K 0o, (1)
* Multi determinant 0V (r) = _‘fz /drd 5 (1) OV
» Back flow 1/ Pv (r)
 Pfaffian
- etc

'il)y (I‘) — Ev@év (I‘)

—%Vz +V (r)

wave functions can be optimized
via an effective field potential (v-representable set)
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WR) = e sign(a(R)] A(R) = f(R) — a(R)

N, o(R) = S=U7(R) U7 (R)
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The wave function can be optimized directly from the DMC run

vin) x(r) J2(r)
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Ns = 200 , \IJT(R)

A\ 4

standard DMC accumulationf
<A >=) GiRi) (R
<> =) LR (R

(sample of N, configurations)

A\ 4

New trial wave-function

Vr(R) = Uo(R)

Ne=aNg,a>1




Work supported by DOE-BES

The fixed node ground state wave-function can be obtained directly
by sampling over the walker distribution of a DMC run

Single determinant Wave functions with backflow can be optimized
directly from the DMC run reducing the impact of non-polynomial
costs

Conjecture (1) Removing the kink in the Fixed node wave-function
always improves the nodes globally

Conjecture (2) Random errors in the wave-function expansion
improve the nodes in a simulating annealing-like process

Conjecture (3) Removing the high energy contribution removes the
Kink at the node and improves it

Provided that conjectures (1) to (3) are true, the sign problem can
be circumvented accepting a finite error

The cost of reducing this error grows exponentially with the number
of particles
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