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We use CASINO 2.1         Cambridge Quantum Monte Carlo Code
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Approximations (1) pseudopotentials, (2) Fix Node (3) DFT structure

= ET

This is a very demanding test for DMC
Total energy differences require cancelation of errors on 0.01% or more



Levels of approximation  of GW methods:

“DFT”

G0W0 approximation

G0W0 + vertex: G0Wf approximation

Self-consistent: GW approximation

Hedin’s equations

G0W0 and G0Wf approximations rely on DFT as a “good starting point”.

Hybertsen & Louie (1985)

Del Sole et al. (1994)

Tiago et. al (2006)



Many-body expansion of the electron-hole propagator.

Dynamics of electron-hole excitation obtained by solving the Bethe-
Salpeter equation (BSE).

Requires knowledge of quasiparticle orbitals (get from GW).

Optical Excitations:  Bethe-Salpeter Equation

Eigenvalue problem:



Results: First spin-triplet

• Stoke’s shifts estimated as max 0.2 eV from DFT not included in above data

GW-BSE systematically low

DMC systematically high



Scissors (eigen-values) self-consistency seems 
essential in GW/BSE.

DMC gives higher (~0.8 eV ) triplet energies

Experimental data suggest incorporating self-consistency 



We find good agreement for Ionization Potentials
ΔSCF (DFT) QMC and GW are similar.

First Ionization Potentials



ΔSCF (DFT) is still not far from experimental data.
GW requires self-consistency

QMC systematically underestimates EA. 

Electron Affinities



Is the glass full or empty?

• GW-BSE
– Scissors self-consistent improves agreement with 

experiment
– Has the approach predictive power in general?

• ΔSCF and TDLDA
– Agree with experiment in fullerenes
– They are known to disagree in carbon nanotubes

• QMC
– Cancelations of the relative systematic errors < 10-5

– Need compact multiconfigurational expansions &/or 
orbital optimization for large systems

– Pseudopotential evaluation related errors are small
• Experiment 

– Experiments in single molecules 

Full 

Empty

http://arxiv.org/abs/0803.0560

http://arxiv.org/abs/0803.0560


Motivation
• The Kohn-Sham formulation of DFT establishes 

an equivalence between interacting and non 
interacting densities.

• No other property of the interacting ground state 
wave-function is in principle retained.

• However, Kohn-Sham wave-functions are used 
as starting point for methods that go beyond 
DFT such as QMC or GW-BSE etc.

Are Kohn and  Sham wave-functions any good? 
Do they retain any physical property beyond the 

density?



non interacting
v-representable

interacting
v-representable

v-representable

Densities Wave-functions

non interacting
v-representable

interacting
v-representable

VKS

For non-degenerate systems there is at most one Kohn-Sham wave-function 
with the interacting density

Kohn-Sham correspondence between interacting and non-
interacting densities
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v-representable

v-representable

Densities Wave-functions

non interacting
v-representable
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v-representable

(1)
(2)

(3)

For non-degenerate systems there is at most one Kohn-Sham wave-function 
with the interacting density

Retaining other properties of the interacting ground state 
in the non interacting wave-function

Optimizing other properties thus requires to change the density



non interacting
v-representable

interacting
v-representable

v-representable

Densities Wave-functions

non interacting
v-representable

interacting
v-representable

(1)
(2)

(3)

Optimizing other properties thus requires to change the density

Retaining other properties of the interacting ground state 
A density-density functional transformation must be found

Reboredo & Kent PRB (2008)



Two interacting particles in a square box

V = 8γ cos[απ(x-x’)] cos[απ(y-y’)]
V

α and γ control the shape and strength of V

V is repulsive for |α| < 1/2

H expanded in the first 300 non-interacting eigenfunctions with the ground 
state symmetry. All integrals done analytically. Converged results  
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Wave-functions

non interacting

interacting
v-representable

(1)
(2)

(3)

Minimization of cost functions in the v-representable set

Different properties imply different cost functions and different potentials

Kohn-Sham DFT



Full CI Exact Kohn-Sham

Max Projection Min on nodes
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The density is depends strongly on the cost function 

Exact Kohn-Sham

Max Projection

Min on nodes

A density-density functional must be found to optimize other properties  



Full CI  (V = 0 ) Exact Kohn-Sham

Max Projection Min on nodes
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Optimized effective potentials

Effective potentials depend strongly on the many-body property retained



Interaction strength γ
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For this model exact DFT is 
the worst description of the nodes !



How do we get good nodes for large systems?

How do we transform a complex wave-function
With good properties into a simpler-function with 

the same properties ?



What could we do if we new the Fixed Node wave function? 

Removing the kink in  YT moves the node in the right direction 



Distribution of walkers

Standard Importance Sampling Diffusion Monte Carlo Algorithm 

Number of configurations

Fixed-Node Ground State Wave-Function

Trial Wave-Function

We know and ,

We want to know and 

One equation with three known quantities and two unknowns could be soluble

D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980)



The Fixed Node Wave-Function…

….can be obtained directly by sampling 
over the walker distribution.

Fixed-Node Ground State

Wave-Function Projectors

DMC sampling
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Expansion of the Ground-State Wave-Function 

Full CI

DMC (size = error bar)

An expansion of the Ground-State Wave-Function can be 
obtained from DMC with full CI quality 

A Simple Self-Healing DMC Algorithm: Results



starting trial wave function: anything

standard DMC accumulation

New trial wave-function

Ns = a Ns , a > 1

=

Ns = 200  ,

(sample of Ns configurations) 

A Simple Self-Healing DMC Algorithm

How do we simplify the wave-function ? 

How do we construct a faster one?
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Conjecture (2) Noise in the coefficients plays the role of a temperature in a simulated 
annealing approach. Good fluctuations are reinforced bad ones are abandoned.
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1)

Are non-interacting eigen-functions: 
ï increasing kinetic energy

2)
= 0 < x 4if

else = 

3)
We set =

Conjecture (3) Removing the high energy contribution removes 
the kink at the node and improves it



A cost function for optimization of trial wave functions 
for Importance Sampling

Chi-Squared distribution

Relative errors have the same
Impact for every bin

How close are two probability densities?

This cost function extended to the full Hilbert space by the | | and the  q[ ]

a



A cost function for optimization of trial wave functions 
for Importance Sampling

Any expression of the 
Ground State Wave-Function
• Single determinant
• Multi determinant
• Back flow
• Pfaffian
• etc

wave functions can be optimized  
via an effective field potential (v-representable set)



A cost function for optimization of trial wave functions 
via an effective field DFT-like potential



A cost function for optimization of trial wave functions 
via an effective field DFT-like potential



Optimization of the Jastrow Parameters directly from the DMC run
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V(r) c(r) J2(r)

The wave function can be optimized directly from the DMC run



Optimization of Back Flaw Parameters directly from the DMC run

õfn(r). (dr/dan |r )
dan



standard DMC accumulation

New trial wave-function

Ns = a Ns , a > 1

=

Ns = 200  ,

(sample of Ns configurations) 

The Complete Self-Healing DMC Algorithm

Slater determinant
Jastrow

and back flow
optimization loop



Conclusions
• The fixed node ground state wave-function can be obtained directly 

by sampling over the walker distribution of a DMC run
• Single determinant Wave functions with backflow can be optimized

directly from the DMC run reducing the impact of non-polynomial 
costs

• Conjecture (1) Removing the kink in the Fixed node wave-function 
always improves the nodes globally 

• Conjecture (2) Random errors in the wave-function expansion 
improve the nodes in a simulating annealing-like process

• Conjecture (3) Removing the high energy contribution removes the
kink at the node and improves it

• Provided that conjectures (1) to (3) are true, the sign problem can 
be circumvented accepting a finite error

• The cost of reducing this error grows exponentially with the number 
of particles 

Work supported by DOE-BES 
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