The search for the nodes of the fermionic ground state

Some believe that unicorns are just shy and difficult to find.
However, most people believe blue ones do not exist.
We all believe that the nodes of a many body fermionic wave-

functions exist.
However, many think they are as hard to find as blue unicorns.






DMC for poets
The node

v (R)=0

“Nothing really matters
Anyone can see

Nothing really matters, nothing really matters - to me”

Freddie Mercury
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A Theoretical Blue Unicorn : finding the blue nodes
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Removing the kink in ¥+ moves the node in the right direction



D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980)

Number of configurations
NS

‘Ifo (R) \IJT (R) < Trial Wave-Function
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vr

Fixed-Node Ground State Wave-Function

Distribution of walkers

We know ¥7(R), N. and f(R)

We want to know Yo(R) and VT

One equation with three known quantities and two unknowns could be soluble
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Multi-Determinant Expansion

Every anti-symmetric function can be written as a product of a
symmetric function (Jastrow) and a complete sum of anti-
symmetric functions.
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Every anti-symmetric function can be written as a product of a
symmetric function (Jastrow) and a complete sum of anti-
symmetric functions.
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* Single determinant
* Multi determinant

» Back flow
 Pfaffian

 etc

Any expression of the trial wave-function
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W (R) — 6_'](R) Z A, @y (R) Fixed-Node Ground State

fn(R) — QQ'J(R) (I)n(R) « Wave-Function Projectors

DMC sampling

[ arsmy = Y

...can be obtained directly by sampling
over the walker distribution.



W (R) — 6_'](R) Z A, @y (R) Fixed-Node Ground State

,(R)

_ 2J(R)

gn(R) € (I)T(R)

: L

Ay <\, > i
\/Nc_1

* The nodes move because of errors.
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* The nodes can move because of errors
* How do we take advantage of errors?



Ns = 200 | \IJT (R) starting trial wave function: anything
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—| standard DMC accumulation
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The model test system: two interacting spinless fermions in a box

Case (1) Model interaction

V = 8y n? cos[amn(x-X")] cos[an(y-y’)]
o and y control the shape and strength of V

V is repulsive for |a|<1/2 and y> 0

Full Cl: H expanded in the first 300 non-
interacting eigenfunctions with the
symmetry of the ground state. All integrals
done analytically. Converged results

Case (2) Coulomb interaction

V =20 2 1/sqri[(x-X')2+(y-y’)?] \

1
1

The nodes are not trivial

We will compare the algorithm against almost-analytical results




Ns = 200 \IJT (R) starting trial wave function: anything
' Ay =- a3
—| standard DMC accumulation Az = Ay
<An >= Zg’” (Ri) 7 (Ri) A, = O (for any other 1,))
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(sample of Ns configurations)

a,, (full Cl coefficients)

¥ The starting trial wave function:
is orthogonal to the “exact” CI
ground state

New trial wave-function

Ur(R) =~ ¥o(R)

> 1 The standard DMC algorithm must fail
= with this trial wave-function choice

N.=aN
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The DMC energy converges to the full Cl even starting from the worst trial wavefunction
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An expansion of the Ground-State Wave-Function can be
obtained from DMC with full CI quality
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Systematic convergence of the wave-function towards the CI solution
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We observe first a fast improvement followed by a slow improvement regime

\ Systematic Improvement (bad nodes)
AN Statistical Improvement |-
e (good nodes)
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Rp =log[1— < U |Up > /(|V||Vr])]

7 8
Log(Nw;)

Truncation of high energy components moves the nodes in right direction
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3) 74

We set Ur(R) = PUu(R)

Truncation of poorly resolved high energy components
moves the nodes in right direction




Rp =log[1— < U |Up > /(|V||Vr])] |

Statistical Improvement
(good nodes)

-X+C

Noise in the coefficients plays the role of a temperature in a simulated annealing
approach. Good fluctuations are reinforced bad ones are abandoned.



>| standard DMC accumulation
< 5\n >= Zgn (Rl) 77(R1)
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(sample of Ns configurations)
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New trial wave-function

Ur(R)= ¥o(R)

Noise in the coefficients plays the role of a temperature in a simulated annealing
approach. Good fluctuations are reinforced bad ones are abandoned.



A Self-Healing DMC Simple Algorithm: Results
Case (2) Coulomb interaction V =20 72 1/sgri[(x-x’)?+(y-y’)?]
Expansion of the Ground-State Wave-Function
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We obtain a systematic reduction of the energy (beyond error bar)



A Self-Healing DMC Simple Algorithm: Results

Case (2) Coulomb interaction V = 20 2 1/sqri[(x-x")2+(y-y’)?]
Expansion of the Ground-State Wave-Function
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A Self-Healing DMC Simple Algorithm: Results
Case (2) Coulomb interaction V =20 72 1/sgri[(x-x’)?+(y-y’)?]
Interacting Ground-State: Electronic Density

Initial trial wave function ——
density

With the ground state wave function we can evaluate any observable



A Self-Healing DMC Simple Algorithm: Results
Case (2) Coulomb interaction V =20 72 1/sgri[(x-x’)?+(y-y’)?]
Expansion of the Ground-State Wave-Function
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We obtain a systematic reduction of the energy (beyond error bar)



A Self-Healing DMC Simple Algorithm: Results
Case (2) Coulomb interaction V =20 72 1/sgri[(x-x’)?+(y-y’)?]
Non-Interacting Kohn-Sham Electronic Density
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Case (2) Coulomb interaction

V =20 72 1/sgri[(x-x’)?+(y-y’)?]

Reboredo & Kent

PRB 245110 (2008)
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Summary

The fixed node ground state wave function can
be obtained directly from the walker distribution

An iterative algorithm based on the update of the
trial wave function leads to a systematic
reduction of nodal errors

The algorithm takes advantage of truncation and
statistical errors to improve the trial wave
function

The Kohn-Sham potential can be obtained
directly from a SH-DMC run

Tests in larger systems are in progress
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