Van der Waals forces in graphitic nanostructures

Norbert Nemec

QMC in the Apuan Alps IV Vallico Sotto, 28th July 2008

History

Johannes Diderik van der Waals (1837-1923): \rightarrow Postulation of intermolecular attraction in gases and liquids

Fritz London: → Unified treatment of "dispersion forces" in noble gases [Eisenschitz und London, Z. Physik 60, 491 (1930)]

Henk Casimir and Dirk Polder → Proposed force between metal plates in vacuum *"The Influence of Retardation on the London-van der Waals Forces"* [Phys. Rev. **73**, 360 (1948)]

Definitions of terms

Inter-molecular forces: anything except covalent or ionic bonds

- A) dipole-dipole force (two permanent dipoles) [more general: multipole forces]
- B) hydrogen bond
- C) induced dipole force (permanent dipole/induced dipole)
- D) dispersion forces (instantaneous dipole-dipole force)

London force

 \rightarrow synonym for "dispersion force" (sometimes including induced dipole force)

van der Waals force

→ synonym for "intermolecular force" (sometimes synonym for dispersion force)

Casimir force

 \rightarrow dispersion force between solids (continuum theory)

Dispersion force between atoms

 \Rightarrow long-distance correlations between electron positions within unpolar atom

obtained via QM-multipole expansion [Eisenschitz und London, Z. Phys. 60, 491 (1930)]

Casimir force

Macroscopic bulk description of force between polarizable media.

- depends on *dynamic polarizability* and *geometry* of media
- not additive (!)
- in case of metal bodies in vacuum
 ⇒ elegant computation via vacuum energy of intermediate space
- always attractive for symmetric combination of media (e.g. metal-vacuum-metal, air-liquid-air, etc.)
- reduced with increasing temperature
- reduced by relativistic retardation important for longer distances

Graphite

intralayer bond length: $d_{CC} = 1.4196 \text{ Å}$ atomization energy $E_{at} = 7.374 \text{ eV/atom}$ intralayer isotrop. elastic constant: $C_{11} + C_{22} = 1240 \text{ GPa}$

interlayer distance: exfoliation energy: interlayer elastic constant: $d_{\text{interlayer}} = 3.335 \text{ Å}$ $E_{\text{ex}} = 35...52 \text{ meV/atom}$ $C_{33} = 36.5 \text{ GPa}$

Cavendish

Laborator

Theoretical attempts on interlayer energetics

	Method	$d_{ m interlayer}$ (Å)	$E_{\rm ex}\left(\frac{{ m meV}}{{ m atom}}\right)$	C_{33} (GPa)
Brennan (1952)	LCAO + vdW	exp. input	11 / 172	39 / 11
Girifalco (1956)	lattice summation		54	
DiVincenzo (1983)	DFT + Thomas Fermi	5.6	110	
Yin (1984)	DFT-LDA	7.05 ± 0.7	~ 13.6	54 ± 20
Jansen (1987)	all elec. augmented PW	6.83 ± 0.06		56 ± 9
Schabel (1992)	DFT-LDA	6.72	24	24.3
Charlier (1994)	DFT-LDA	6.60	20	
Telling (2003)	DFT-LDA	6.70	35	
Rydberg (2003)	layered DFT-vdW	7.52	24	13
Zhechkov (2005)	DFTB + a posteriori vdW	6.76	38.5	
Mounet (2005)	GGA (at exp. lattice const.)	exp. input		45
Donchev (2006)	QMPFF	6.972	54.9	40.6
Ortmann (2006)	GGA + semiemp. vdW	6.69	83.5	41.7
Ziambaras (2007)	general DFT-vdW	7.18	53	27
Hasegawa (2007)	DFT + semiemp. corr.	exp. input	60.4	exp. input
Gould (2008)	LDA/GGA + semiemp. corr.	exp. input	$62.4 \ / \ 59.7$	exp. input

Norbert Nemec

Labora[.]

Correlation between experiment and theory

exfoliation energy:

42 meV/atom [Girifalco 1952: wetting by organic liquids] ~ 20 meV/atom → various incorrect conversions 35 meV/atom [Benedict 1998: collapse of nanotubes] 52 meV/atom [Zacharia 2004: polyaromatic hydrocarbons]

π -conjugated electronic structure of graphene

in-plane sp^2 -orbitals \rightarrow strong σ -bonds

remaining p_z -orbitals \rightarrow semi-metallic π -bands π -band structure of graphene:

Cavendis Laborat

Dispersion forces for thin layers

TABLE I. Asymptotic vdW energy of parallel structures. K and D_0 are constants.

System	Present	Standard
1D metals ^a	$-D^{-2}(\ln(KD))^{-3/2}$	$-D^{-5}$
1D insulators [9]	$-D^{-5}$	$-D^{-5}$
2D metals [10,11]	$-D^{-5/2}$	$-D^{-4}$
π -conjugated layers ^a	$-D^{-3}$	$-D^{-4}$
1 metallic, 1 π layer ^a	$-D^{-3}\ln(D/D_0)$	$-D^{-4}$
2D insulators [6]	$-D^{-4}$	$-D^{-4}$
Thick metals or ins. [11]	$-D^{-2}$	$-D^{-2}$

^a* Denotes new derivations given here.

[from Dobson, White and Rubio, Phys. Rev. Lett. 96, 073201 (2006)]

Graphite and QMC

[Fahy et al., Phys. Rev. B 42, 3503 (1990)]

- VMC with nonlocal pseudopotential
- \rightarrow precision insufficient for vdW interactions

[Prendergast et al., Phys. Rev. B 66, 155104 (2002)]

- VMC with inhomogeneous e-e-Jastrow term
- \rightarrow no binding energy extracted
- \rightarrow large number of parameters (3000 for 3x3x3 super cell)

Our approaches (work in progress!!)

Norbert Nemec

vdW-tailored Jastrow term

DMC with finite-size corrections

11 Cavendish Laboratory

The Jastrow-D-term

Inspired by classical dipole-dipole interaction:

$$E = \frac{1}{4\pi\epsilon_0 R^3} (\boldsymbol{d}_A \cdot \boldsymbol{d}_B - 3(\boldsymbol{d}_A \cdot \boldsymbol{R})(\boldsymbol{d}_B \cdot \boldsymbol{R}))$$

longitudial dipoles

attractive transverse dipoles

The Jastrow-D-term

Inspired by classical dipole-dipole interaction:

$$E = \frac{1}{4\pi\epsilon_0 R^3} (\boldsymbol{d}_A \cdot \boldsymbol{d}_B - 3(\boldsymbol{d}_A \cdot \boldsymbol{R})(\boldsymbol{d}_B \cdot \boldsymbol{R}))$$

Two independent D-terms:

$$D_{\parallel} = \sum_{I < J} \sum_{i,j} (\boldsymbol{r}_{Ii} \cdot \boldsymbol{R}_{IJ}) (\boldsymbol{r}_{Jj} \cdot \boldsymbol{R}_{IJ}) f_{\parallel}^{IJ} (r_{Ii}, r_{Jj})$$

$$D_{\perp} = \sum_{I < J} \sum_{i,j} \left[(\boldsymbol{r}_{Ii} \cdot \boldsymbol{r}_{Jj}) R_{IJ}^2 - (\boldsymbol{r}_{Ii} \cdot \boldsymbol{R}_{IJ}) (\boldsymbol{r}_{Jj} \cdot \boldsymbol{R}_{IJ}) \right] f_{\perp}^{IJ} (r_{Ii}, r_{Jj})$$

 f_{\parallel}^{IJ} and f_{\perp}^{IJ} : scalar functions with cutoff, analogous to U term \rightarrow optimized independently for each pair of atoms (reduced by symmetry)

 \Rightarrow implemented, but yet to be tested ...

Graphite interlayer binding with CASINO

- CASTEP wave function (plane-wave \rightarrow blip)
- using pseudo-potentials \Rightarrow 4 electrons per C atom
- primitive cell containing two graphene layers with two atoms each $\Rightarrow 16$ electrons per primitive cell
- starting out with 3x3x1 simulation cell

 \Rightarrow 144 electrons in simulation cell

• Jastrow terms: U, χ, F $\rightarrow N_u = N_{\chi} = 6, N_{f-ee} = N_{f-eN} = 2$ \rightarrow fixed cutoffs $L_u = 4 \text{ a.u.}, L_{\chi} = 3 \text{ a.u.}, L_f = 2 \text{ a.u.}$ \rightarrow varmin-linjas optimization

DMC time-step and CPU cost analysis

 \rightarrow 64 nodes à 100 configs \rightarrow 1000 time steps data collection \rightarrow 5 × 64 = 320 CPU hours

 \rightarrow correlation time: ~ 2 a.u. \rightarrow using dtdmc=0.01

Twist averaging

18 twist angles according to special points in hexagonal 2D Brillouin zone

[Cunningham, Phys. Rev. B 10, 4988 (1974)]

Preliminary results

super cell	$E_{\rm ex} \ ({\rm meV/atom})$	CPU hours
$3 \times 3 \times 1$	102 ± 6	2×1000
$3 \times 3 \times 2$	68 ± 5	2×5000
$4 \times 4 \times 1$	53 ± 4	2×5000
experiment	3552	

Next steps

- more careful Jastrow optimization
- finite size correction for kinetic energy
- Ewald \leftrightarrow MPC
- check error from finite k-grid in DFT
- localize blip wfn (not yet implemented for complex wfn)
- \rightarrow ~ larger systems and more smaller and intermediate system sizes

Acknowledgements

- Richard Needs
- Neil Drummond
- everyone else in the QMC group, Cambridge
- DAAD for financing the project

