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The QMC Petascale Project
Richard G. Hennig

• 1 Petaflop = 1015 floating point operations per second
• Next generation of massively parallel computers: 105 – 106 cores
• Limited memory and bandwidth
• Requires novel algorithm to obtain optimal performance
• QMC algorithms for petascale
• Comparison and benchmarking of VMC/DMC codes

What will a petascale computer look like?
What are the limitations of current QMC algorithms for petascale computers?

How can Quantum Monte Carlo algorithms take advantage of petascale?  

Supported by DOE & NSF
Computational resources provided by NCCS, CCNI, NCSA, NERSC and OSC

mailto:rgh27@cornell.edu
mailto:rgh27@cornell.edu


rhennig@cornell.edu

Quantum Monte Carlo Petascale Endstation
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Motivation:
• Breakthrough QMC simulations enabled by the state-of-art, high-performance 

computers of every generation
- Hard-core bosons – CDC 6600 (Kalos ’74)
- Ground state of hydrogen at high pressures –  CRAY XMP & CYBER 205 (Ceperley ’87)
- Carbon/silicon clusters – HP 9000/715 cluster & Cray Y-MP (Williamson ’01)
- Continuous DMC-MD – LLNL teraflop cluster (Grossman ’05)
- Coupled Electron-Ion Monte Carlo simulations of hydrogen – Cray XT3/4 at ORNL 

(Ceperley)

• Novel QMC algorithms
- Better wave functions (backflow, geminals, pfaffians)
- Efficient optimization methods for all parameters (Jastrow, CSF, orbital, basis)
- Efficient computation of forces and energy differences
- Better estimators of observable (zero-variance & zero-bias principle)
- Improved scaling (localized orbitals, B-splines)
- Efficient finite size corrections

Team:
Ceperley & Kim (UIUC), Mitas (NC), Hennig & Umrigar (Cornell), Zhang & 
Krakauer (W&M), Kent & Schulthess (ORNL), Srinivasan (Florida State)
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Moore’s law
•Number of transistors on a chip doubles every 2 years

Homogeneous Multicore Architectures (Intel)
• Intel Teraflop Research Chip
‣ 80 cores, 3.16 GHz, 62 Watt power consumption

• Compare to ASCI Red
‣ 1 TFlop in 1996, 10,000 processors
‣ 500 kW power + 500 kW cooling

Heterogeneous Multicore Architectures (AMD)
• Combination of cores for specific tasks
•Graphics (GPU’s), network (FGPA’s) & compute cores

Low Power Consumption
• IBM Power 4

Processors for Petascale

Quantum Monte Carlo in the Apuan Alps IV 
 Summer, 2008 • The Towler Institute
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Massively Parallel
• Over 100,000 cores ⇒ Small memory footprint

•Multilevel parallelism

•Multi (32) core processors ⇒ Limited memory bandwith

Examples of Existing Systems

Tera → Petascale Supercomputers

Quantum Monte Carlo in the Apuan Alps IV 
 Summer, 2008 • The Towler Institute

Machine Vendor Performance Top500 Processors Memory
DOE/

OakRidge Cray XT4 205 TFlops 5 7,832 quad core 2.1 GHz 
AMD Opteron 2 GB/core

NERSC/
LBNL Cray XT4 85 TFlops 15 9,660 dual core 2.6 GHz 

AMD Opteron 2 GB/core

CCNI/RPI IBM 
Bluegene/L 73 TFlops 22 32,768 700 MHz IBM 

Power 440 
256/512
MB/proc

NCSA Dell 68 TFlops 23 2,400 quad core 2.3GHz 
Intel Xeon 1 GB/core
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Scaling of Current QMC Algorithms
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Figure 4. (a) CPU time per Monte
Carlo (MC) step for bulk carbon
(diamond) and BN (zincblend) [51].
Each MC step involves random
moves of N electrons. (b) Breakup
of many-body wave function compu-
tations for 32- and 256-electron sys-
tems using one-particle orbitals in a
plane-wave (PW), molecular-orbital
(MO) basis and on a real-space grid
with B-spline methods [52].

An analysis of computational kernels [53] is presented in Fig. 4 (b). Of three alternative
representations of the one-particle orbitals, the use of B-spline interpolation of orbitals on a grid
speeds up the computation sixfold over use of a plane-wave (PW) basis set, while the cost with
molecular-orbital (MO) basis set falls between B-spline and PW. The gain in computation time
of real-space methods become increasingly large as the system size grows. The time to evaluate
one-particle orbitals can be further reduced by using maximally localized orbitals (MLOs) [54].
The speedup at N = 256 is a direct consequence of using the localized orbitals. For large systems,
the performance of determinant updates and Jastrow function evaluations, which typically scale
as N2, becomes as important as one-particle orbital evaluations.

In AF QMC, each walker is a Slater determinant: |φ〉 = |ϕ1, ϕ2, · · · , ϕN 〉 [55], where N is
the number of electrons, and each electron orbital is given by ϕi =

∑M
j=1 cj,i|χj〉, where |χj〉

is a one-electron basis state, and M is the size of the basis. The main operations include (i)
propagating a walker and (ii) calculating the so-called local energy. A walker propagates by

eĥ(σ)|φ〉 → |φ′〉, (5)

where ĥ(σ) is an independent-electron Hamiltonian which depends on the external auxiliary
fields, σ. The fields are sampled by the random walk and fluctuate both spatially and temporally.
The local energy is given by

EL(φ) =
〈ΨT |Ĥ|φ〉
〈ΨT |φ〉

, (6)

where |ΨT 〉 is a Slater determinant (i.e., of the same form as |φ〉).
There are presently two main flavors of the phaseless AF QMC method, from two different

choices of the one-electron basis: (i) plane-wave and norm-conserving pseudopotential, and (ii)
Gaussian basis sets. In (i), a simulation supercell or twist-average boundary conditions. A
basis function is specified by |χj〉 ∝ exp(iGj · r), where Gj is a reciprocal lattice vector. As in
plane-wave DFT calculations, our basis set consists of plane waves with |Gj |2/2 ≤ Ecut, where
the cutoff energy, Ecut, controls the size of the basis, M ∝ E3/2

cut . The dimension of the AF σ
is O(8 M). The computational cost of each MC step (advancing all components of σ) scales
roughly as N2 M lnM . In (ii), the size of the basis is much smaller, but the cost of each step
currently scales as M3. The calculation of the local energy is similar to the calculation of the
variational energy in a Hartree-Fock calculation.

5. Transition from the Terascale to the Petascale QMC.
As demonstrated in Figure 3, current QMC algorithms scale well to a few thousand processors
provided that each processing element has a sufficient number of local walkers. They also

O(N3) dominates above ≈1,000 electrons B-spline cost dominates
Jastrow and determinant part increasingly 
important for larger systems

Computational effort in DMC dominated by wave function evaluation
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Parallelism in Quantum Monte Carlo
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Walker distribution
• Stochastic propagation of walker ensemble ⇒ Distribution of walkers across nodes

the double occupancy of a 3d orbital [47]. The complexity of many-body effects in these systems
calls for new methods and strategies.

The Mott transition in TMOs such as MnO, CoO, and NiO is a prototypical problem. A half
century ago, Mott [48] described how electron-electron interactions could induce an insulating
state in these materials with a transition to a metallic state under pressure. Evidence of the
Mott transition has recently been observed in the pressure-induced metalization of manganese
oxide (MnO) [49, 50]. As such, it is an excellent testing case for expanding the applicability
of QMC to transition metal solids. At high pressures (about one million atmospheres), the
material undergoes a structural phase transition and very close to that also an electronic
phase transition to a metal with essentially zero magnetic moment on the Mn ions. The DFT
approaches, including extended DFT methods such as LDA+U, have significant difficulties to
explain this transition. For example, with proper tuning of the correlation parameter, U , one can
reproduce some, but not all, of the experimental observations, indicating that this requires much
higher accuracy of the treatment of the electron correlation. Our preliminary QMC calculations
provided very encouraging results for the estimation of the band gap and cohesive energy of the
MnO solid at the ambient conditions. Therefore we are well poised to address the challenge of
describing correctly the electronic structure of two different phases of TMO systems.

Figure 2. (a) Computational structure of DMC and AF QMC. Each column is a random
walk stream. The number of columns gives QMC population size. The red arrow indicates
a population control, where weights {w } are adjusted and birth/death can occur. Shown in
green is one QMC step for one walker. Each walker is a configuration of an N -particle system
for DMC (shown as R) or a Slater determinant which looks like a DFT solution for AF QMC
(shown as |Φ〉). (b) The parallel processor view of a generation after a population control.
The population is distributed among SMP nodes to balance computational loads between the
population control steps. Each SMP node can utilize multiple threads, e.g., two walkers for each
thread on a dual-core node of this example. A group of SMP nodes as indicated by grey boxes
can share single-particle orbitals whose storage needs exceed the physical memory of a SMP
node.

4. Quantum Monte Carlo: Algorithms, Scalability, and Performance on current
HPC systems
The vast majority of the computational time in an accurate QMC simulation is spent in diffusion
Monte Carlo (DMC) and phaseless auxiliary-field QMC (AF AMC) methods. A variational

Population control
followed by

walker 
redistribution

QMC step for
one walker

Orbital distribution across nodes

Few walkers per SMP node
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Potential Break-Through Simulations
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Coupled electron-ion Monte Carlo/Molecular Dynamics
• Free energies of solid/liquid phases, chemical reactions/catalysis
• Reduce wall clock time per MD time step by

using minimum number of walkers required for accuracy
• Limit of 1 walker/core is reached for ≈ 10,000–100,000 cores

Transition Metal Oxides
• Magnetism, Mott transition, defects
• Requires system size of 10,000 electrons (large memory for wave function)
• Does not necessarily need increased number of walkers

Limit number of walkers to what is needed
Reduce memory requirements
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Algorithms for Petascale
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Exploit shared-memory capability of single node
• Increase in number of cores per node with constant memory per node
• Fixed average number of walkers per node
⇒ Multithreading of trial wave function evaluation

- Single particle orbitals, dense/sparse determinant updates, Jastrow evaluation
- Careful scheduling of tasks with varying computation loads

Multi-level parallelism
• Averages of set of variables or parameters distributed of processor groups

- Twist averaging, nudged-elastic band calculations, etc.

Challenges
• Load balancing (remove synchronization barriers and blocking communication)
• Fault tolerance (invalidate failed nodes and remove walkers from pool)
• Orbital storage for very large systems

(share read-only data on SMP nodes, distribute orbitals between nodes, overlay 
communication with computation)

• Pseudorandom number generation (test of random number streams in SPRNG)
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Load-Balancing for Petascale
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Simple and effective implementation by manager/worker model

• Ceperley, Kim et al.
• At set wall-clock intervals, nodes send their number of walkers and properties
• Nodes continue propagating local walker population
• Manager decides on optimal walker redistribution and send messages
• Workers check occasionally for posted messages
• Pointwise transfers of walkers between pairs of nodes

• For 32 cores per nodes, single walker per core should be achievable
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Quantum Monte Carlo Codes
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Set of five QMC codes with different approximations, algorithms etc.
• Plane-wave/spline based QMC codes:

(1) Casino
(2) Champ
(3) QMCPack

• Gaussian-based QMC code: (4) QWalk
• Auxiliary-field QMC code: (5) AFQMC

Goals
• Benchmark accuracy and performance of algorithms and codes
• Identify standard examples and procedures for petascale algorithm development
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Quantum Monte Carlo Benchmarks

Quantum Monte Carlo in the Apuan Alps IV 
 Summer, 2008 • The Towler Institute

Calculations
• Accuracy of VMC sampling (no Jastrow)
• Efficiency of Jastrow factor  (ee, en, een, plane-wave Jastrow)
• Accuracy and performance of QMC algorithm (time step)

Systems
• Silicon bulk
‣ 2 and 54 atom cells
‣ DF-PP (Trail & Needs, moderate cutoff)  and  LDA-PP (small cutoff)

• MnO
‣ LDA-PP (moderate cutoff)

• Single water molecule
• Electron gas
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QMC Benchmarks for Silicon
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• Silicon bulk
‣ 2 atom cell, DF-PP (Trail & Needs, moderate cutoff)
‣ AFQMC uses Kleinman-Bylander form of pseudopotential (shift in energy)
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QMC Benchmarks for MnO
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MnO
‣ Ferromagnetic rocksalt structure, LDA-PP (moderate cutoff)

Difference in VMC energies appears to originate in pseudopotential energy
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QMC Application for Molecules
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Optimization of large number of wave function parameters
• Energy optimization of Jastrow, CSF and orbital coefficient of trial wave function

The Benzene Dimer
• Simplest prototype of π-π interactions, very weak binding of 1-3 kcal/mol
• Difficult for quantum chemistry (MP2, CCSD(T), basis set convergence)
• Parallel displaced geometry shows strongest binding

Previous QMC calculations
• Diedrich, Luchow and Grimme (2005)

PD: -3.00(38)  TS: -3.58(0.38) kcal/mol
• Korth, Luchow, Grimme (2008):

PD -1.65(42) kcal/mol
• Sorella et al.:  PD  2.2(3) kcal/mol
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QMC Application for Benzene
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Optimization of large number of wave function parameters
• Energy optimization of Jastrow, CSF and orbital coefficient of trial wave function

Parallel Benzene Dimer
• Burkatzki, Fillipi, Dolg PP, Double zeta basis, up to 1,000 parameters

• Test case demonstrates importance of Jastrow, CSF & orbital optimization
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The QMC Petascale Project
Richard G. Hennig

• 1 Petaflop = 1015 floating point operations per second
• 105 – 106 compute cores, 32 cores per node, limited memory and bandwidth
• QMC algorithms for petascale ⇒ Single walker per node
‣ Exploit shared-memory capability of cores on SMP node
‣ Multi-level parallelism & Load balancing
‣ Memory reduction ⇒ Orbital distribution
• Comparison and benchmarking of VMC/DMC codes
• Importance of orbital optimization

What will a petascale computer look like?
What are the limitations of current QMC algorithms for petascale computers?

How can Quantum Monte Carlo algorithms take advantage of petascale?  
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