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Overview

 Problems with fermion DMC
• Getting the nodes right
• Noncommuting / off-diagonal observables

 PIGS -- yet another way to sample Green’s function
• An application to evaluation of multipole moments
• Optimizing nodes
• Released node

 Future directions
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Limitations of canonical fixed node DMC

• Nodal surface comes from
more approximate method

• Evaluation of nonlocal
pseudopotentials introduces a
trial function bias in energy

• Observables which don’t
commute with the Hamiltonian
e.g. charge density have a trial
function bias
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Improving nodal error

 Better trial functions
+ Backflow, Pfaffians, Multiple determinants
o Scaling with Ne
o Effective optimization

 Released node
+ Faster Computers
+ Correlated sampling
o Naive Scaling ~exp(Ne)
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Routes to better trial functions for nodal surface

Starting from  Slater-Jastrow ansatz

Multiple determinants
Many body functions in determinant (backflow)
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Backflow
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Optimizing nodes in VMC (benzene dimer example)
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Example: Optimizing backflow for argon dimer
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Example: Optimizing backflow for argon dimer
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Approaches to optimization

 VMC
• Variance minimization
• Energy minimization

− Too much noise from correlations
• Some other metric (e.g. Lüchow 2007)

 DMC sidewalks
• Local Energy
• dE/dτ

− Expensive

 Some other way -- PIGS
− Expensive, noisy, probably won’t even work -- Lets do it!
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PIGS / VPI for Fermions

Path Integral Ground state Quantum Monte Carlo

PIGS projects in imaginary on a single fixed length path

Challenges:
•No Guiding function!
•Must have very accurate propagator

Advantages:
•No population control
•Non-commuting and 
   off-diagonal observables
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Reptation vs PIGS

 Reptation:
 Only move endpoints
 Use “guided”

Green’s function

 PIGS:
 All beads can move
 Use unguided “bare”

Green’s function
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Need a high order factorization of Green’s function

 Could use “exact” pair coulomb density matrix (PIMC)
• Gets the ee and en cusps exactly right

− Expensive, tricky to implement
−Quality is density dependent
−Doesn’t help with arbitrary potentials (e.g. from

fixed phase)

 Use a general 4th order propagator
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The Nodal Action

• Do nothing :  charge density builds up at nodes  [ ln( dτ ) scaling ]
 
• Use image approximation to treat nodal action  [ ~ ( dτ2 ) scaling ] 
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Efficiency compared to DMC   (not great)

 Even with nodal action and 4th order propagator
• PIGS time step ~ 5 x 10-4

• DMC time step ~ 10-2

 Surprisingly, PIGS is only ~factor of 20 slower than DMC in total
CPU time vs error bar.

 Nodal action appears to be the limiter with dτ2  scaling

 Tests with hydrogenic atoms show 4th order propagator is 4th
order even for en cusp -- correct g( r )
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Application to noncommuting observables

Multipole Moments for some first row dimers

-10.6( 4 )-8.0( 3 )Q 4   -8.0 ± 2.4

4.8( 9 ) 3.8( 3 )Q 4

56( 7 ) 72( 1 )Q 4

0.68( 5 )-1.53( 3 )Q 2   1.09 ± 0.07N2

0.38( 3 )-0.63( 5 )Q 2   0.25O2

8.4( 6 ) 7.79( 4 )Q 2Li2

PIGSVMCExperiment
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A direct optimization scheme
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What is a good metric for node optimization?

 Maximize Volume / surface area within nodal pocket

Energy
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Optimization Procedure

1. Generate a set of paths {Y1,Y2,…,YM} given initial
boundary conditions (nodal surface)

2. Evaluate average distance to nearest boundary at
center of path <|Rc

i - R0
i(α)|> and <∇α|Rc

i - R0
i(α)|>

3. Use favorite optimization scheme to generate new
parameters α’

4. Repeat 2.-3. with α’ on original {Y1,Y2,…,YM} reweight
<|Rc

i - R0
i(α’)|> and <∇α|Rc

i - R0
i(α’)|> by change in

nodal action  Πl Gnode(Rl,Rl+1; α’)/ Gnode(Rl,Rl+1; α)
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Test: Optimizing V/S for single particle in 2D box

 Boundary defined by 4 b-splines : volume conserved
106 paths,   16 iterations
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Application to “real” systems

 Estimate distance to node |R-R0| assuming

 This is a poor approximation so results for <|Rc
i - R0

i(α)|>
must be filtered --  typically 80% of configurations are lost

 Exploring steepest descent to find nearest root.
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Results for Li2, N2, O2

 -150.3268

 -109.5423

-14.9954

Experiment

-109.515( 3 )-109.505N2

-150.248( 5 )-150.277O2

Li2 -14.9941( 1 )-14.9938

After node
Optimization

Original  Umrigar
DMC Energy

• Trial function based on Umrigar multideterminant wfn
• Optimize determinant coefficients and orbitals

• Obtained modest improvements over Umrigar’s published 
optimized parameters for these wfns (except Oxygen)

Work in progress…  more sophisticated wfns / larger systems
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Released node with PIGS

Released Node Fixed Node Released Node

Release nodes for fixed number of time slices at path endpoints

Evaluate local energy at path endpoints.  Paths on - side contribute
 with a negative weight.
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Released node with PIGS :  efficiency  Li2, C2,F2

Cost ∝ ∆τ2N5
e

Li2

F2

C2
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Released node Li2
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Released node C2
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Released node C2
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Future Directions

 Extend optimization tests to
• larger systems
• More sophisticated trial functions

 Evaluation of single particle density matrix and other
off-diagonal observables

 Correlated path released node
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Correlated paths

+  

-
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Off diagonal observables (for fermionic systems)

• E.g.  Single particle density matrix
• Exchange-correlation hole.

 - -  Hood et al. (1996)

Pair correlation 
function (VMC)

Exchange-correlation 
hole (VMC)

Exchange- correlation
 hole (LDA)
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Other adventures with PIGS:  Correlated Sampling
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Validation of approach

Test I  :: Noble atom solid (FCC Argon)
• Continuum system

−QMC ‘always’ Gamma point so large calculation
required to minimize finite size errors.

• Well characterized experimentally

Test II  :: Benzene dimers
• Chemically ‘non-trivial’ system
• Well studied with high level Q-Chem methods



35

Physical Sciences

Constraints on our QMC methodology

Goal is to treat very large scale (hundreds of atoms)
which imposes constraints on our approach

• Use Pseudopotentials
• Use a simple Slater-Jastrow variational ansatz

−Orbitals from DFT
−Minimal number of determinants
− Backflow if necessary

Do errors in the nodal surface have a strong infl uence on
relatively weak dispersive intermolecular interactions?
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Validating our approach
Example I ::  FCC Solid Argon

•128 argon atom
supercell
(1024 electrons)

•Single determinant

•No backflow
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Validating our approach
Example I ::  FCC Solid Argon

Putting the QMC result into context…
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Example II  ::  Benzene dimers

Parallel displaced

T-shaped

CCSD(T) results : J. Phys. Chem. A 110, 10656 (2006).

HF-MP2-DMC results : J. Chem. Phys. 123, 184106 (2005).

130

4.9

HF+MP2+
DMC

119116110E (meV)

5.04.94.9d (Å)

CCSD(T)LDA+BF+
DMC

LDA +
DMC

155

3.41

HF+MP2+
DMC

121128130E (meV)

3.93.83.8d (Å)

CCSD(T)LDA+BF+
DMC

LDA +
DMC
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Example II  ::  Benzene ‘pancake’ dimer

Using  different DFT functionals to generate the single particle orbital
inputs to QMC allows for rough estimation of systematic error.

side

top
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Lessons learned from Argon and Benzene dimers

 For ‘reasonable’ separations, fixed node error appears
to cancel for purely dispersive interactions

 Nonlocal pseudopotentials give error from locality
approximation of up to ~100 meV -- difficult (but not
impossible) to resolve at the VMC level

 A good variational ansatz (backflow) can still be
problematic to optimize and does not strongly influence
Van der walls binding energies

--  Iterative DMC-VMC required
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Some preliminary results for H2 on aromatic carbon

Focus ::  H2 adsorbed on

 Can we say anything about scaling and non-additivity of vdW on
these adsorbents?

Benzene
Coronene Graphene
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H2 on benzene

Single h2 binding energy is ~52 ± 8 meV
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H2 on coronene

Single h2 binding energy is ~200 ± 12 meV
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H2 on planar Graphene (1/3 filling )

…Work in progress…     multiple determinants required

288 atom super cell!
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Scaling of H2 binding on planar aromatic carbon

H2 - benzene  

H2 - graphene

    1/3 filling  

H2 - coronene  
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Nonadditivity of H2 binding with substrate

Simple picture of competing electron correlation effects
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QMC computational cost
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In progress / future directions

• Carbon based materials offer many different possibilities
for tuning binding energetics of H2  e.g.

• Curvature

• Damage

• Doping

• Decorating

• Charging
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In progress / future directions  (methodology)

• Improved ‘nodal-centric’ variational metrics
• Path based variational optimization (inline DMC)
• Relax some of our constraints

• E.g. use pfaffians for variational ansatz
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All QMC methods are stochastic

In each iteration, an ensemble of many-body coordinates

are drawn from the probability distribution

Never “see” the full wavefunction only

Collect statistics on observables of interest
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QMC Solves…

Ground state of full many-body Schrödinger equation

By starting with a guess

And projecting out the exact ground state
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Overview

 What is Quantum Monte Carlo

 Why is it good for Van der Waals interactions

 Limitations of the method

 Our approach for large systems

 Example applications (solid argon, benzene dimer)

 Current results for H2 on carbon adsorbants
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QMC Benchmarks for Van der Waals interactions

Quantitative determination of Van der Waals
interactions from first principles is an active
area of research

For complex / large systems where experimental
results are difficult to obtain, high quality
benchmarks are required

Fixed node Diffusion Monte Carlo requires
minimal uncontrolled approximations ::
(total QMC energy is a variational upper
bound and depends on the accuracy of
nodal surface)


