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Two-Dimensional Homogeneous Electron Gas (I)

• 2D HEG: set of electrons moving in 2D in a uniform, inert, neutralising background.

• Hamiltonian (for finite system):
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∑

i
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i +
∑

j>i

vE(rij) +
NvM

2
.

Infinite-system GS energy per particle depends only on the density (specified by
radius rs of circle containing one electron on average) and spin polarisation [ζ =
(N↑ −N↓)/N ].

• Physical realisations:

– Electrons on metal surfaces. E.g. Cu [111].
– Electrons on droplets of liquid He. Held in place by image charges
– Inversion layers in MOS devices. Can easily tune density. Electrons far from

dopants; fewer complications due to disorder; technologically important.



Two-Dimensional Homogeneous Electron Gas (II)

• HEG is simplest fully interacting quantum many-body system.

• QMC is the only accurate method available for studying its ground-state properties.

• We have carried out QMC studies of the 2D HEG:

1. We have calculated the zero-temperature phase diagram.1

2. We have calculated the PCF, structure factor and momentum distribution.2

3. We are currently calculating the single-particle energy band and hence quasiparticle
effective mass.

• Our data will hopefully be of interest to

– Experimentalists looking for ferromagnetism and Wigner crystallisation in low-
density 2D HEGs.

– Theorists interested in constructing 2D XC functionals for DFT calculations.

1 N. D. Drummond and R. J. Needs, submitted to Phys. Rev. Lett. (2008).
2 N. D. Drummond and R. J. Needs, submitted to Phys. Rev. B (2008).



Wigner Crystallisation in 2D (I)

• Kinetic energy dominates at high density: form Fermi fluid to minimise it.

• Potential energy dominates at low density: form Wigner crystal to minimise it.

• Wigner crystals have been observed on the surface of liquid helium3 and in inversion
layers in MOSFET devices4.

• 2D Wigner crystals could be of use in quantum computing devices.5

• Previous QMC studies6 indicate that fluid–crystal transition occurs somewhere
between rs = 25 and 40 a.u.

• Can we be more precise?

3 C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
4 E. Y. Andrei et al., Phys. Rev. Lett. 60, 2765 (1988); R. L. Willett et al., Phys. Rev. B 38, 7881 (1988).
5 P. M. Platzman & M. I. Dykman, Science 284, 1967 (1999); P. Glasson et al., Phys. Rev. Lett. 87, 176802 (2001).
6 B. Tanatar & D. M. Ceperley, Phys. Rev. B 39, 5005 (1989); F. Rapisarda & G. Senatore, Aust. J. Phys. 49, 161 (1996).



Wigner Crystallisation in 2D (II)

• Triangular lattice has lowest Madelung constant. Wins at low density.

• Hartree–Fock theory7: antiferromagnetic square lattice → ferromagnetic triangular
lattice at rs = 2.6 a.u.

• We consider only triangular lattices.

7 J. R. Trail, M. D. Towler and R. J. Needs, Phys. Rev. B 68, 045107 (2003).



Magnetic Behaviour of the Fermi Fluid

• Bloch transition: para. fluid favoured at high density (want to minimise KE); ferro.
fluid favoured at low density (keep electrons apart to minimise XC energy).

• Hartree–Fock theory: Bloch transition at rs = 2.01 a.u. No region of stability for
ferromagnetic fluid.

• VMC8: Bloch transition at rs = 13(2) a.u.; crystallisation at rs = 33(2) a.u.

• DMC9: Bloch and crystallisation transitions at rs = 37(5) a.u.

• DMC10: Bloch transition at rs = 20(2) a.u. and crystallisation at rs = 34(4) a.u.

• Experiment11: “Possible evidence” of ferromagnetism at rs = 7.6 a.u.

8 D. Ceperley, Phys. Rev. B 18, 3126 (1978).
9 B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).

10 F. Rapisarda and G. Senatore, Aust. J. Phys. 49, 161 (1996).
11 A. Ghosh, C. J. B. Ford, M. Pepper, H. E. Beere and D. A. Ritchie, Phys. Rev. Lett. 92, 116601 (2004).



Magnetic Behaviour of the Wigner Crystal

• Hartree-Fock theory12: ferromagnetic for rs > 2.6 a.u.

• Multispin exchange model13: frustrated antiferromagnetism (spin liquid) →
ferromagnetism at rs = 175(10) a.u.

• We have studied both ferromagnetic and antiferromagnetic triangular crystals.

• We have used striped antiferromagnetic crystals. Energy should be close to that of
the spin liquid.

Spin up
Spin down

12 J. R. Trail, M. D. Towler and R. J. Needs, Phys. Rev. B 68, 045107 (2003).
13 B. Bernu, L. Candido and D. M. Ceperley, Phys. Rev. Lett. 86, 873 (2001).



Fermi Fluid: PBC, TBC and TABC

• Orbitals for Fermi fluid:
φk(r) = exp(ik · r).

• Periodic boundary conditions: {k} are simulation-cell G-vectors.

• Single-particle finite-size effects: Increase N at fixed density; grid of G-vectors gets
finer; energy per electron jumps as shells of G vectors pass through Fermi line.

• Twisted boundary conditions: k are simulation-cell G vectors offset by ks ∈ 1st BZ
of simulation cell.

• Twist averaging: average over all ks. Replaces grid of k by a Fermi area (equal
to area of Fermi circle), greatly reducing single-particle finite-size effects. Shape of
Fermi line isn’t quite right: gives negligibly small positive bias to KE.

• Previous QMC studies of 2D HEG have not used twist averaging.



Long-Ranged Finite-Size Errors

• Compression of XC hole and neglect of long-ranged two-body correlations in finite
cell give error in 2D energy per electron going as O(N−5/4).14 Extrapolate using:

EN = E∞ − bN−5/4.

• Previous QMC studies have used N−3/2 for crystals and N−1 for fluid.
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14 N. D. Drummond, R. J. Needs, A. Sorouri and W. M. C. Foulkes, submitted to Phys. Rev. B.



Backflow Transformation

• Evaluate Slater wave function at quasiparticle coordinates related to actual electron
coordinates by electron–electron backflow functions.15

• Moves nodal surface of wave function; can improve the fixed-node DMC energy.

• BF is more significant in fluids than crystals, where electrons are already kept apart
by localisation on lattice sites.

• Parallel spins are already kept away from each other by wave-function antisymmetry.
BF is much less important in ferromagnetic systems.

System (rs = 30 a.u.) Lowering of energy due to BF (µHa / elec.)
Paramagnetic fluid 36(3)
Ferromagnetic fluid 1.5(4)
Antiferromagnetic crystal 6(1)
Ferromagnetic crystal 1.0(4)

15 P. López Ŕıos, A. Ma, N. D. Drummond, M. D. Towler and R. J. Needs, Phys. Rev. E 74, 066701 (2006).



Optimisation of Crystal Orbitals

Crystal orbitals: φR(r) = exp(−C|r−R|2).
Only orbital parameter affecting crystal nodal surface: Gaussian exponent C. Minimise
DMC energy w.r.t. C to minimise fixed-node error.
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Time-Step and Population-Control Biases

Population-control bias is bad at low density.16

Use about 1600 configurations to make population-control bias negligible.

Time-step bias is linear; extrapolate DMC energies to zero time step.

0 1 2 3 4
DMC time step (a.u.)

-0.04626

-0.04624

-0.04622

-0.04620

-0.04618

D
M

C
 e

ne
rg

y 
(a

.u
. /

 e
le

c.
)

Ferro.; N=64
Ferro.; N=196
Antif.; N=64
Antif.; N=100

0 2 4 6 8
DMC time step (a.u.)

-0.03196

-0.03195

-0.03194

-0.03193

-0.03192

D
M

C
 e

ne
rg

y 
(a

.u
. /

 e
le

c.
)

Para; N=42
Para; N=74
Para; N=90
Para; N=122
Para; N=162
Ferro; N=45
Ferro; N=109

DMC energy against time step for a ferromagnetic crystal at rs = 20 a.u. (left) and
fluid at rs = 30 a.u. (right).

16 N. D. Drummond, Z. Radnai, J. R. Trail, M. D. Towler and R. J. Needs, Phys. Rev. B 69, 085116 (2004).



2D HEG Energy Diagram (I)

20 30 40 50
r

s
 (a.u.)

0.812

0.814

0.816

0.818

0.820

(E
 +

 1
.1

06
10

3/
r s )

 r
s3/

2  (
a.

u.
) RS ferro. crys.

RS ferro. fl.
RS para. fl.



2D HEG Energy Diagram (I)
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2D HEG Energy Diagram (II)

• Fully polarised fluid is never stable.

• Wigner crystallisation occurs at rs = 30± 1 a.u. Transition is from a paramagnetic
fluid to an antiferromagnetic Wigner crystal.

• Further transition: antiferromagnetic → ferromagnetic crystal at rs = 45± 5 a.u.

• At rs = 35 a.u., the energy of a fluid with ζ = 2/5 agrees with the paramagnetic
and ferromagnetic fluid energies. Very unlikely that a region of stability for a partially
polarised fluid exists.

• Phase transitions in 2D HEG cannot be first order.17

• It’s energetically favourable to form boundaries between macroscopically separated
phases, so a “microemulsion” is formed at crystallisation density.

• New phases could “round off corners” in energy diagram.

17 B. Spivak and S. A. Kivelson, Phys. Rev. B 70, 155114 (2004); R. Jamei et al., Phys. Rev. Lett. 94, 056805 (2005).



Hybrid Phases (I)

• It’s been suggested that there exist hybrid phases that are neither fluid nor crystal18.
Orbitals are long-ranged Wannier functions. (From limit that band-gap closes.)

• Have tried using orbitals of the form

φR(r) = exp
(−C|r−R|2) +

∑

S

cS

∑

G∈S

cos[G.(r−R)],

where C and the cS are optimisable. S runs over stars of G vectors. This form of
orbital can describe the proposed hybrid phase and the crystal phase, but not the
fluid phase (which is a partially filled band).

• Tried variance and energy minimisation, brute force VMC, and brute force DMC
optimisation, starting from both cP = 0 and random {cP}. Tried fixed and free
Gaussian exponent C.

• Restricted ourselves to ferromagnetic phases.

18 H. Falakshahi and X. Waintal, Phys. Rev. Lett. 94, 046801 (2005); X. Waintal, Phys. Rev. B 73, 075417 (2006).



Hybrid Phases (II)

Method Orbitals BF Energy (a.u. / elec.)

VMC DMC-opt. Gauss.+PW No −0.031 838 45(5)
VMC DMC-opt. Gauss. No −0.031 840 13(3)
VMC VMC-opt. Gauss. No −0.031 850 15(9)
VMC Gauss.+PW No −0.031 852 97(7)
VMC Gauss.+PW Yes −0.031 871 3(1)
DMC VMC-opt. Gauss. No −0.031 916 5(3)
DMC Gauss.+PW No −0.031 917 9(3)
DMC Gauss.+PW Yes −0.031 918 0(3)
DMC DMC-opt. Gauss. No −0.031 919 7(2)
DMC DMC-opt. Gauss.+PW No −0.031 919 9(5)
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• Can lower VMC energy slightly with hybrid wave function.

• Doesn’t change charge density (optimising exponent in DMC has a greater effect).

• Doesn’t lower DMC energy as much as optimising Gaussian exponent within DMC.

• Suggests we aren’t really finding a new phase.



Contact PCF of Paramagnetic Fluid (I)

• g(0) is an important parameter in construction of GGA XC functionals.

• Most theoretical calculations of g(0) have used ladder theory to solve approximately
the Bethe–Goldstone equation for the effective interaction between two electrons.
Exact in high-density limit, but not at low densities.

• Disagreement between old approximation19 in ladder theory and a better
approximation,20 and between the better approximation in ladder theory and QMC.21

Which is right?

• We evaluate g(r) [including g(0)] by binning interparticle distances. Easier in 2D
than 3D. Easier at high density than low density.

• Earlier study used Slater–Jastrow wave function and no twist averaging; ours used
Slater–Jastrow–backflow wave functions and twist averaging.

19 S. Nagano, K. S. Singwi, and S. Ohnishi, Phys. Rev. B 29, 1209 (1984); Erratum, Phys. Rev. B 31, 3166 (1985).
20 Z. Qian, Phys. Rev. B 73, 035106 (2006).
21 P. Gori-Giorgi, S. Moroni, and G. B. Bachelet, Phys. Rev. B 70, 115102 (2004).



Contact PCF of Paramagnetic Fluid (II)
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Momentum Density of Paramagnetic Fluid

Discontinuity at Fermi edge is important in Fermi liquid theory. Old QMC data22 shows
rise in MD at Fermi edge at low density. Our new data doesn’t show this.
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22 B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).



Single-Particle Energy Band (I)

• Single-Particle Energy Band Ek (in many-body theory):

– Occupied k: Ek is the difference between the total closed-shell GS energy and the
energy of an (N − 1)-electron system with an electron removed from k.

– Unoccupied k: Ek is the difference between the energy of the (N + 1)-electron
system in which k is occupied and the closed-shell GS energy.

• Fermi liquid theory justifies “single-particle” picture.

• Quasiparticle effective mass: m∗ = kF/(∂Ek/∂k)kF
. Most important parameter in

Fermi liquid theory. Lots of controversy: GW,23 QMC24 and experimental results25

are inconsistent.

• DMC SP band is very sensitive to nodal surface of wave function. Less sensitive to
DMC time step. Suffers some finite-size effects, although most cancel.

23 G. F.Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, Cambridge University Press, Cambridge (2005)
24 Y. Kwon, D. M. Ceperley and R. M. Martin, Phys. Rev. B 50, 1684 (1994); Y. Kwon, D. M. Ceperley, and R. M. Martin,

Phys. Rev. B 53, 7376 (1996).
25 V. M. Pudalov et al., Phys. Rev. Lett. 88, 196404 (2002); J. Zhu et al., Phys. Rev. Lett. 90, 056805 (2003).



Single-Particle Energy Band (II): rs = 1 a.u.
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Effective mass (from fit): m∗ = 0.954 a.u.
Fairly good agreement with earlier QMC calculation.



Single-Particle Energy Band (II): rs = 5 a.u.
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Single-Particle Energy Band (II): rs = 10 a.u.
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Conclusions

• There is no region of stability for a ferromagnetic Fermi fluid in 2D.

• Wigner crystallisation occurs at rs = 30± 1 a.u. in 2D.

• Crystallisation transition is from a paramagnetic fluid to a (frustrated)
antiferromagnetic triangular crystal.

• Transition from an antiferromagnetic to a ferromagnetic crystal at rs = 45± 5 a.u.

• Have looked for a recently proposed hybrid phase. Didn’t find it. Of course there
could be other types of hybrid phase. . .

• QMC results for contact PCF change little when wave function is improved. Suggests
they are accurate. Disagreement with ladder theory.

• No evidence for rise in MD at Fermi edge, found in old QMC study.

• Calculations of energy band and effective mass are in progress.
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