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INTRODUCTION

Motivation: Noncollinear spins and Spiral Spin Density Waves
Problem: The Overhauser Instability in the Homogeneous Electron Gas
Method: Generalized Hartree-Fock theory

Results

Interpretation



NONCOLLINEAR SPINS

Collinear: definite spin (up or down) with respect to global quantization axis.

Particles are distinguishable, simplifies calculation.

Noncollinear: spin directions that are not parallel to the global quantization
axis and the spin direction can vary with position.

Wavefunction depends fully on position and spin coordinates.

Ab Initio methods:
problems.

some DFT codes.

CASINO does VMC for specific



e Spin density or Magnetization density: net magnetic moment due to spin.
Vector function of position. Noncollinear example:
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Spiral Spin Density Wave
(magnetization wavevector q)
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Neutron scattering experiments: SSDW is ground state of several systems

e Motivation: Need trial wavefunction for QMC study of such system.



OVERHAUSER INSTABILITY

What is ground state of Homogeneous Electron Gas in Hartree-Fock theory?

High-density (low r,) limit: paramagnet. Low-density (high 7): ferromagnet.
Collinear states.

Overhauser: paramagnet is never ground state, but instead a Spiral Spin
Density Wave is.

Proof and analytical solution for 1D with repulsive o-function interaction.
(A. W. Overhauser, Giant spin density waves, Phys. Rev. Lett. 4, p.462
(1960))

Proof of existence for 3D with Coulomb interaction. (A. W. Overhauser, Spin
density waves in an electron gas, Phys. Rev. 128, p.1437 (1962))



(GENERALIZED HARTREE-FOCK THEORY

HF theory of noncollinear spins. Orbitals have full spin dependence.

Can write orbitals as function of space-spin coordinates 1 (x). Equivalently,

can write orbitals as two-component spinors: 1 (r) = ( :zlgg )
- 2

Wavefunction is determinant of spinors: W = \/%det [ (r;)].
Hamiltonian: H =", —VZ4 3. U(ry) + 3 D i V(T T) + A
V' could be Coulomb or Ewald interaction.

Total energy is E = (U|H|¥). Evaluate variation with respect to orbitals,
subject to orthonormality constraint.



Gives single-particle HF equation (depending on exact form of f[) such as:

(K+U+V-J)¢,(r) =, () (1)

This is a 2x2 matrix equation. K (kinetic energy), U (external potential), V
(direct term) and J (exchange term) are 2x2 matrices of spatial operators.

For spin independent H, J can still have off-diagonal components, giving rise
to noncollinearity.

Collinear case is special case with 9(r) = ¢(r)x, where x is a spin eigenstate.
Reduces problem to Unrestricted HF theory.

HF equation needs to be solved self-consistently.



HARTREE-FOCK THEORY OF HOMOGENEOUS ELECTRON (GAS

Hamiltonian: H =" —iVZ+ %Zi,j;éiv(ri?rj)

Single-particle HF equation is self-consistently solved by SSDW orbitals:

Y, (r) = ek* < cos(6y) e~izar )
Tk

sin(36)) eTibar

Ll V)

k is plane-wave vector, q is magnetization wave vector (constant), and the
orbital has its spin pointing in (6,q - r) direction (spiral in space).

Two orthogonal orbitals are possible at each k-point: § — 6 + .

Mixing up spin at k — %q with down spin at k + %q.



e Paramagnet and ferromagnet are special cases. They correspond to particular
choices of occupation and 6.

e Example: paramagnet is two overlapping spheres in k-space:

e Overhauser instability: driven by exchange. Arises as noncollinearity near
k = 0 and accompanying reoccupation of k-space.



ANALYTICAL PART

Total energy:

1 A 1
E = 25{1{2"‘ “q*—k- qcos@k}——— Z K 1{,‘2008 —(Hk—Hk/) 5 N¢E
K k,k/£k
(2)

(£ is Ewald self-image term)

Single-particle HF equation:

(% g )i )] (5t ) = () @



NUMERICAL PART

Aim Find occupation of k-space and form of 6 self-consistently. Find value
of g that gives lowest energy.

Parameters: r5 and q.
Start by choosing initial occupation of orbitals and 6.

Several schemes: Best guess at solution (" Overhauser-like”). Paramagnetic
occupation with randomized angles. Combination of the two. Starting from
converged result of another calculation.

lterate to self-consistency.
Consistency of result: total energy vs. sum of eigenvalues.

Numerically tricky, false local minima, lack of convergence.



Energy per particle (a.u.)
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Energy per particle (a.u.)

RESULTS: ENERGY VS. SYSTEM SIZE

SDW HF Extrapolation
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NATURE OF THE INSTABILITY
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NATURE OF THE INSTABILITY
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NATURE OF THE INSTABILITY

SDW HF Angles
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NATURE OF THE INSTABILITY

Instability is associated with formation of an energy gap. The spiral spin
density is a short-wavelength periodic structure.

SDW HF Eigenvalues
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REsuULTS: ENERGY VS. 714
SDW HF
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Effect gets smaller at higher density, questionable at r;, = 1.0.



THE PROBLEMS

Converged results at s = 1.0 are paramagnetic like. (Double occupancy, 6
step-like)

At vy = 1.0, particle number 50346, all calculations converge to paramagnet!

At rgy = 4.0, for some values of g, converges to states with energy higher than
paramagnet. This is independent of starting schemes.

Thorough look at what's happening at r; = 4.0: Local minima!



Energy difference from paramagnet per particle (a.u.)

LOCAL MINIMA: r, = 5.0
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Energy difference from paramagnet per particle (a.u.)
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Theta

LOCAL MINIMA: THETA VS. Q
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LOCAL MINIMA: DIFFERENT STARTING STATES
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CONCLUSIONS

Demonstrated the existence of the instability for some densities. lts nature is
qualitatively as predicted by Overhauser.

Converged occupation of k-space and shape of 0, consistent with each other.
Can clearly see instability when it's present.

For high densities, may get slightly lower energy than paramagnet but it's not
Overhauser instability.

Starting choice of 0, more important than starting occupation of k-space in
determining what minimum the calculation converges to.
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