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Introduction

• Motivation: Noncollinear spins and Spiral Spin Density Waves

• Problem: The Overhauser Instability in the Homogeneous Electron Gas

• Method: Generalized Hartree-Fock theory

• Results

• Interpretation



Noncollinear spins

• Collinear : definite spin (up or down) with respect to global quantization axis.

• Particles are distinguishable, simplifies calculation.

• Noncollinear : spin directions that are not parallel to the global quantization
axis and the spin direction can vary with position.

• Wavefunction depends fully on position and spin coordinates.

• Ab Initio methods: some DFT codes. CASINO does VMC for specific
problems.



• Spin density or Magnetization density : net magnetic moment due to spin.
Vector function of position. Noncollinear example:

Spiral Spin Density Wave
(magnetization wavevector q)

Neutron scattering experiments: SSDW is ground state of several systems

• Motivation: Need trial wavefunction for QMC study of such system.



Overhauser Instability

• What is ground state of Homogeneous Electron Gas in Hartree-Fock theory?

• High-density (low rs) limit: paramagnet. Low-density (high rs): ferromagnet.
Collinear states.

• Overhauser: paramagnet is never ground state, but instead a Spiral Spin
Density Wave is.

• Proof and analytical solution for 1D with repulsive δ-function interaction.
(A. W. Overhauser, Giant spin density waves, Phys. Rev. Lett. 4, p.462
(1960))

• Proof of existence for 3D with Coulomb interaction. (A. W. Overhauser, Spin
density waves in an electron gas, Phys. Rev. 128, p.1437 (1962))



Generalized Hartree-Fock theory

• HF theory of noncollinear spins. Orbitals have full spin dependence.

• Can write orbitals as function of space-spin coordinates ψ(x). Equivalently,

can write orbitals as two-component spinors: ψ(r) =
(

ψ1(r)
ψ2(r)

)
.

• Wavefunction is determinant of spinors: Ψ = 1√
N !

det |ψ
i
(rj)|.

• Hamiltonian: Ĥ =
∑

i−1
2∇2

i +
∑

i U(ri) + 1
2

∑
i,j 6=i V (ri, rj) + λ

V could be Coulomb or Ewald interaction.

• Total energy is E = 〈Ψ|Ĥ|Ψ〉. Evaluate variation with respect to orbitals,
subject to orthonormality constraint.



• Gives single-particle HF equation (depending on exact form of Ĥ) such as:

(K̂ + Û + V̂ − Ĵ)ψ
k
(r) = εkψk

(r) (1)

• This is a 2x2 matrix equation. K̂ (kinetic energy), Û (external potential), V̂
(direct term) and Ĵ (exchange term) are 2x2 matrices of spatial operators.

• For spin independent Ĥ, Ĵ can still have off-diagonal components, giving rise
to noncollinearity.

• Collinear case is special case with ψ(r) = φ(r)χ, where χ is a spin eigenstate.
Reduces problem to Unrestricted HF theory.

• HF equation needs to be solved self-consistently.



Hartree-Fock theory of Homogeneous Electron Gas

• Hamiltonian: Ĥ =
∑

i−1
2∇2

i + 1
2

∑
i,j 6=i V (ri, rj)

• Single-particle HF equation is self-consistently solved by SSDW orbitals:

ψ
k
(r) = eik·r

(
cos(1

2θk) e−i1
2q·r

sin(1
2θk) e+i1

2q·r

)

• k is plane-wave vector, q is magnetization wave vector (constant), and the
orbital has its spin pointing in (θ,q · r) direction (spiral in space).

• Two orthogonal orbitals are possible at each k-point: θ → θ + π.

• Mixing up spin at k− 1
2q with down spin at k + 1

2q.



• Paramagnet and ferromagnet are special cases. They correspond to particular
choices of occupation and θk.

• Example: paramagnet is two overlapping spheres in k-space:

• Overhauser instability: driven by exchange. Arises as noncollinearity near
k = 0 and accompanying reoccupation of k-space.



Analytical part

• Total energy:

E =
∑

k

1
2

{
k2 +

1
4
q2 − k · q cos θk

}
−1

2
1
Ω

∑

k,k′ 6=k

4π

|k− k′|2 cos 21
2
(θk − θk′)+

1
2
Nξ

(2)

(ξ is Ewald self-image term)

• Single-particle HF equation:

[(
Kk1 0
0 Kk2

)
−

(
Jk1 Jko

Jko Jk2

)](
cos(1

2θk)
sin(1

2θk)

)
= εk

(
cos(1

2θk)
sin(1

2θk)

)
(3)



Numerical part

• Aim Find occupation of k-space and form of θk self-consistently. Find value
of q that gives lowest energy.

• Parameters: rs and q.

• Start by choosing initial occupation of orbitals and θk.

• Several schemes: Best guess at solution (”Overhauser-like”). Paramagnetic
occupation with randomized angles. Combination of the two. Starting from
converged result of another calculation.

• Iterate to self-consistency.

• Consistency of result: total energy vs. sum of eigenvalues.

• Numerically tricky, false local minima, lack of convergence.



Results: Energy vs. System size
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Results: Best Q
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Results: Energy vs. System size
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Nature of the instability
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Nature of the instability
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Nature of the instability
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Nature of the instability
Instability is associated with formation of an energy gap. The spiral spin

density is a short-wavelength periodic structure.
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Results: Energy vs. rs
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Effect gets smaller at higher density, questionable at rs = 1.0.



The problems

• Converged results at rs = 1.0 are paramagnetic like. (Double occupancy, θk

step-like)

• At rs = 1.0, particle number 50346, all calculations converge to paramagnet!

• At rs = 4.0, for some values of q, converges to states with energy higher than
paramagnet. This is independent of starting schemes.

• Thorough look at what’s happening at rs = 4.0: Local minima!



Local minima: rs = 5.0
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Local minima: rs = 4.0
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Local minima: Theta vs. q
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Local minima: Different starting states
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Conclusions

• Demonstrated the existence of the instability for some densities. Its nature is
qualitatively as predicted by Overhauser.

• Converged occupation of k-space and shape of θk consistent with each other.
Can clearly see instability when it’s present.

• For high densities, may get slightly lower energy than paramagnet but it’s not
Overhauser instability.

• Starting choice of θk more important than starting occupation of k-space in
determining what minimum the calculation converges to.
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