2007 International Workshop Quantum Monte Carlo in the Appuan Alps July 21 – 28, 2007 • The Towler Institute, Vallico Sotto, Tuscany http://www.vallico.net/tti/tti.html

Emergent 2d behaviour in a 3d electronic environment: Dense Be-Li alloys

Richard G. Hennig, Ji Feng, Neil W. Ashcroft and Roald Hoffmann

- Do Be and Li form alloys?
- What is their electronic structure?
- Can they have higher superconducting temperatures than pure Be and Li?

The Beryllium Story

Elemental beryllium

- Highest Debye temperature of all metallic elements: $\Theta_{\rm D} = 1100 \text{ K}$
- Superconducting transition temperature of only $T_c = 26 \text{ mK}$
- Because Be is barely a metal

Improve T_c by alloying

• BCS formula $T_{\rm c} = 1.13 \cdot \theta_D \exp\left(-\frac{1}{g_0 \cdot V}\right)$

• If $g_0 V$ increases $g'_0 \cdot V' = \alpha \cdot g_0 \cdot V$ $T'_c = T_c \cdot \frac{(2.3 \cdot 10^{-5})^{1/\alpha}}{2.3 \cdot 10^{-5}}$

• Alloying with light elements: Light, metallic, electropositive

Structural Prediction

- Do we understand the structures of intermetallic compounds?
- Can we predict the structure of compounds given the stoichiometry?

- Now, what about MgB_4 or $Cr_{0.08}B_{3.10}$?
- Or prediction of high pressure phases?

Structural Search Algorithm

Structure Maps

H	12	1	12	24	d4																-							d4	294							de	de	4
0	264	264	541	De	400	Aa	Za	14	he	X										d4	d4	d4	d4	d4							d 4	44	495	d4				
N							d4		d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	dd R	de d4	586	R	432	194	\land
С			538	538	264						d4	d4											d4		d4	d4	d4		d4	d4	d4	d4	d4	d4	d4 R	R	d4	\times
s		eG	eG	400		1	2	24	d4	1	d4	d4	d4	d4	d4	d4	d 4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	12		438 de		A30	hl.			de 75	
Se	104	aG	eG	400		2	1	1	64	X	d4	d4	d4	d4	d4	d4	d4	d4	d 4	d4	d 4	d4	d 4	d4	d4	d4	d4	d4			de			de			ei	
Te			400	540		1	22	12	04	1	ei	d 4	d 4	d4	d4	d4	d4	d4	d4	1	d4	12	Z	d4	d4	d4	44	w4	de		ei			ei			ei	
P		-	Av	Av	35	Nu-	eG	eG	d4	d4	d4	d4	04	d 4	d 4	d 4	64	d4	d4	d4	d 4	d4	44	d4	d4	d4	d4	d4	64	de	de	e	e	de	hL	R	hL	
As	7	Au	Av	Av	35		eG.	eG.	da	eG	44	44	-4	44	-	44	44		44	-4	44	-4	7	da	d4	d4	d4	d4	-04	de	2	e	e	hL	hL	hL	~	
Sh	Av	Δv	35	35			60	00	14	00	-4	d4	44	d4	d4	64	44	d4	d4	d4	44	d4	563	563	d4	d4	×.	d4	P	553	ei			ei	X	7	ei	X
Bi	1	~2		13	03	-			-		d4	d4	14	d4	d4	d4	d4	d4	d4	d4	d4	d4	2	14	d4	d 4	24	w4	553	553		X	X	X	\Diamond	X	X	X
B	6	7		7							THE R. L	1000	in H	in the	SAL	in the second	111	WM.	HII!	witt.		-	100	1000	14	teta	i i i i	in the	d4	d 4	dA	kUI	kUI	kUI	NUT	HUT	kui	9
0	GL	GL	Ch	LOR		111	NUT		111	12.1 15		2111			NU	MU	NU	kII	k11	kII	k11	k11	kU	kU	kla		kU	kU	kU	kU	125				949	2-12	P	P
51	GL	GL	GL	56	360	k0	272	LIN	NU	LUN	hi In	AL II	nui		MUL	kUL	kUT.	kUI	kUI	kUI	kU	kUI	kU	kU	-	-		d 4	kU		125			-	1		P	7
Se	or	OF	or	or	15	ki II	L H	ki li	63	ku			-					n.v.					-	-	288		288			P					7		\mathbf{X}	X
Dh	or	or	or	or	wa	14111	ki II	63	03	0.3			-		-			-									288	288		1011		7	1	1	7	X	Ø	7
Ca	~		0.	01		non		P P		1 and	1411	ki II	bi m	H111	LI I	b1 II	MI P	kU	ki H	k131	kUI	ki I	kU	kUI	343		244	154	348		63	-	P	H	-	9	9	4
60						-	-	KUI	Here's	572	w4		noi	mr	m	mr	w4	mr	w4	w4	W4	w4	233	233				6111	1.1 15		03			-	-	H		w4
AI	P	P	P		WC	-	+	NUS.		012	XUI	mr	-	144	100	w.	mr.	44	mr wA	mr	mr	THE	we	Suid.	03	-		noi			uhi	X	1	X	1	X	7	7
-				wo		-	Wa			in the	-								w4	174	144	W4		Two	N	-		-				Ð	K	Ø	9	\bigotimes	1	5
			-		\sim	-	117	hare.			-				03	03	P3	P3	03	D3	PB	P3	23	PB	P			-		1411	JA	P	P	TV	4	\square	H	4
Be	Ð	0	-	0		uu	2.11		K	K	110	Kin a	w	K	K	K.	6	-	Lin.		LLA.	-	tus.	140		-	-	-	130	no.				- 1	1	7		7
Zn	K	K	K	K	WO		KU	RUI					W P										10				-	-	10	-	12		we	1	5	\leftarrow	1	9
Ca	4		2	-										-									the fit				-	63	63	htte	.3	-	17	4	5	\ominus	1	9
Hg	3		R	41		1		m									#											-000	N		$\overline{\nabla}$	7	К	K	5	$\mathbf{\Theta}$	9	9
Mg	\sim	A	0	6	Ю	-	WH	39	W-	and the second								W	44	**	W-7	LI I		1.11	K			-		P	03	6	Ю	Θ	5	Θ		4
Cu		-	K	K		401	401	202	NU NA	kU									kU.	ku		turo I		LUC	-	0		-		10	42	K	Ð	Ð	5	Θ	Θ	4
Ag		1110	K	-	Wi	KU	154	kUI	kur	KU	100			WA	Wa	-	-	WA.	WA	W-	w4	44	144	kU	-	0		LIN	ME	TF US	81	K	K	K	5	\ominus	Θ	4
Au	w4	Wf	-	-	We	KU	0.54	kU	W 4	KU		Wq	W9	RUN	NU1	kU1	NUI	NUT	kul	ALL.	<u>PU</u>	kU	kU	101	LII		-	KU LI	-	We		III S	-		6	K		6
Pd	K	-	-	-	377	kU	IKU	WS	kU	kU	WS	NUL	We	WA	W	kU.	RU	RU1.	KUI	KU	KUI	KUI	KU	KUT	KU			KU	w4	140	Q1	WG	111	D-p3	\ominus	1414	P 2	Θ
Pt	K	K	K		371	k	-	-	KU	-		KU	KU	KU	KU	KU	KU	RU	KU	KU	RUN	NU	KU	KU	KUI	KUI	33	KUI	RUL	RUI			91	q1s	$ \geq $	81	<u> P</u> 2	θ
Ni	K,	K	K	K	X	\mathbf{k}			KU	4	WC	20	kU1	RUI	AU1	NU1	KU	RUI.	RU	RUI	RUI	KU	KU	KUI	KU		-	136	KUI	KU	14	TV1	rv I	03	204	204	TV	Θ
Ir	K	K	K	K	371	1		K	W ⁴	-	w4		w4	W-	W	W								-			33	kU	WA	1007	Cone.	138	0.0	218	q 1	91		À
Rh	K	K	K	K	377				W4		WA	WA	W	WS	W	W ²	wq	W4	WA	w4	kUI	KUI	kU	kU	-			kU	What	WS		-	P.S	218		IQ1		Ă
Co	K	K	K	K	K	K	V	K		K	W	kUI							kU		-			-	-		509	kU	WA	W	Wq	-	ry	rv				Å
Os	4	Z	4	4	V	V	V	V		1														-					wq	w4	w4	ry	ry	W4				Å
Ru	4	Z	V	Z	V	V	V		W	1	w4	-	w4	w											W4	_		kU	W4	W	W4			563		-		Å
Fe	1	4	1	1	1	1	1	1	1	X											1	K	4	X	-						WA	rv			-	rv	A	4
Mr	1	1	1	1	X	X	X	X	X	X			1										X	1				-			TV			w4	4	K	K	
Tc	1	1	V	1	1	V	V	1		1																		1		w4	W	W		w4		1		X
	Cs	Rb	K	No	LI	Bo	Sr	Co	Yb	Eu	Sc	Y	Lu	Tm	Er	Ho	Dy	Tb	Gd	Sm	Nd	Pr	Ce	La	Pu	Np	U	Th	Zr	Hf	Ti	Ta	Nb	V	W	Mo	Cr	Re

• Pettifor structure map of ordered A–B alloys

Computational Detail

Density functional theory

- Generalized gradient approximation (PBE)
- Plane-wave basis and PAW potentials
- Optimization of all parameters

Random structural search

- Use 20 50 starting structures at each selected pressure and composition
- Pressure range 0 200 GPa
- Symmetry identification using ISOTROPY (Stokes & Hatch, BYU)
- Check energy of higher symmetry structures
- Choice of compositions:

 $Be_{1-x}Li_x \quad x = 0, 20, 25, 33, 40, 50, 60, 66, 75, 100 \%$

Enthalpy of Formation & Phase Diagram

• Enthalpy of formation per atom from enthalpies at same pressure

 $H_f(\operatorname{Be}_{1-x}\operatorname{Li}_x) = H(\operatorname{Be}_{1-x}\operatorname{Li}_x) - (1-x) \cdot H(\operatorname{Be}) - x \cdot H(\operatorname{Li})$

- Also known as enthalpy of mixing
- Phase diagram from tie lines of formation enthalpies

Results for Enthalpy of Formation

Stability increases with pressure dramatically at low pressures

Low Pressure Phase Stability

Be₂Li stable above 20 GPa and BeLi above 40 GPa

High Pressure Phase Stability

Be₄Li stable above 80 GPa and BeLi₃ almost stable at 140 GPa

Phase Diagram of LiBe under Pressure

The Stable BeLi phase (P2₁/m)

CrB

The Stable Be₂Li phase (P6/mmm)

The Stable BeLi₃ phase (C2/m)

The Stable Be₄Li phase (R-3m)

Stabilization of Be-Li alloys

Simulated x-ray diffraction pattern

- Cluster of diffraction peaks near 2 $k_{\rm F}$
- Strong interaction between Brillouin zone and initially free-electron Fermi surface ⇒ Pseudogap in density of states

Potential stabilization by Hume-Rothery mechanism

Fermi Density of States

• Beryllium's DOS at the Fermi level is nearly constant over entire pressure range: $g(\varepsilon_F) = 0.04 \text{ eV}^{-1}$ per valence electron

80 GPa	Be4Li R-3m	Be2Li P6/mmm	BeLi P2 ₁ /m				
g(ε _F) in eV ⁻¹ per valence electron	0.06	0.06	0.12				
Be ₄ Li	Be	₂ Li	BeLi				

For a comparable e-ph coupling, T_c would be about 32 K

Electronic Structure of BeLi (P21/m)

Electronic Structure of BeLi (P21/m)

Simple model Hamiltonian can be solved exactly

Electronic Structure of BeLi (P21/m)

The electronic density of states from model Hamiltonian matches the calculated one.

Electron Density of BeLi (P21/m)

Electron density shows layered structure

Electron Density of metastable Be₂Li (Pmcm)

Electron density shows layered structure

Electron Density of stable Be₂Li (P6/mmm)

Origin of Charge Disproportionation

Overlapping core makes internuclear region less accessible to valence electrons

Richard G. Hennig, Ji Feng, Neil Ashcroft and Roald Hoffmann

Do Be and Li form alloys? What is their electronic structure? Can they have higher superconducting temperatures than pure Be and Li?

- Be and Li form intermetallic compounds under pressure
- Possible enhancement of T_c through increased DOS
- Larger core of Li and smaller core of Be push valence electron density into 2D electron gas
- Fascinating high-pressure chemistry of alloys from simple elements

They used to be called the simple elements

