#### Quantum Monte Carlo for Transition Metal Oxides

#### Lucas K. Wagner

Department of Physics North Carolina State University and Computational Nanosciences Group University of California, Berkeley

QMC in the Apuan Alps III

## In collaboration with Lubos Mitas (NCSU) and Jeff Grossman (UCB)

Lucas K. Wagner Quantum Monte Carlo for Transition Metal Oxides

- www.qwalk.org : open-source QMC code
- C++, nice, very extensible
- Long list of features
- www.nanohub.org : pays part of my salary
- Lots of useful tools and learning material, including QMC!

|                                                              | 🔿 🔿 🔿 🔯 QWalk Quantum Monte Carlo Tutorial |
|--------------------------------------------------------------|--------------------------------------------|
|                                                              | <u>F</u> ile                               |
|                                                              | ● Set up system → ② Run QMC → ③ Simulate   |
| <ul> <li>www.qwalk.org : open-source<br/>QMC code</li> </ul> |                                            |
| <ul> <li>C++, nice, very extensible</li> </ul>               |                                            |
| Long list of features                                        |                                            |
| - <b>3</b>                                                   |                                            |
|                                                              | System: CH4                                |
| www.nanohub.org : pays part                                  |                                            |
| of my salary                                                 |                                            |
| <ul> <li>Lots of useful tools and</li> </ul>                 |                                            |
| learning material, including                                 |                                            |
| QMC!                                                         |                                            |
|                                                              | Run QMC >                                  |



- C++, nice, very extensible
- Long list of features
- www.nanohub.org : pays part of my salary
- Lots of useful tools and learning material, including QMC!

| OOO X QWalk Quantum Monte Carlo Tutorial     |              |
|----------------------------------------------|--------------|
| Ele                                          |              |
| ● Set up system → ② Run QMC → ③ Simulate     |              |
| Method: Variational Monte Carlo              | •            |
| Wave function: Slater times two-body Jastrow | •            |
| Variational Monte Carlo                      |              |
| Number of averaging blocks: 100              |              |
| Optimize wave function: 🔴 yes                | -            |
| Wave function optimization                   |              |
| Sample points: 500                           | -            |
| Continue It: 0                               | *            |
| < Set up system                              | Simulate > / |

|                                                                                                                                              | O O O X QWalk Quantum Monte Carlo Tutorial                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                              | <u>F</u> ile                                                                                                                                 |
|                                                                                                                                              | ● Set up system → ② Run QMC → ⑤ Simulate                                                                                                     |
| <ul> <li>www.qwalk.org : open-source<br/>QMC code</li> <li>C++ nice very extensible</li> </ul>                                               | Running simulation<br>output to twobody.opt.o<br>node 0 alive on lucas-wagners-computer-2.local<br>System<br>Wave function<br>Pseudoptextial |
|                                                                                                                                              | O configs read 500 configs randomly generated<br>wfdata allocate                                                                             |
| <ul> <li>Long list of features</li> </ul>                                                                                                    |                                                                                                                                              |
|                                                                                                                                              |                                                                                                                                              |
| <ul> <li>www.nanohub.org : pays part<br/>of my salary</li> <li>Lots of useful tools and<br/>learning material, including<br/>QMC!</li> </ul> | 6%<br>Optimizing wave function (percentage is worst-case)<br>Abort                                                                           |

#### Quantum Monte Carlo for Transition Metal Oxides



- C++, nice, very extensible
- Long list of features
- www.nanohub.org : pays part of my salary
- Lots of useful tools and learning material, including QMC!





- C++, nice, very extensible
- Long list of features
- www.nanohub.org : pays part of my salary
- Lots of useful tools and learning material, including QMC!



#### In this talk

#### Goal

- Method to calculate the properties of transition metal (TM) materials.
- D-orbitals behave very differently from S and P-how?

#### References:

- JCP 126 034105 (2007)
- J. Phys: Condensed Matter topical review coming very soon

#### Methods

- DFT and DMC, mostly
- Small core (Ne) ECP on TM
- TZ basis set
- QWalk (www.qwalk.org) for all QMC calculations
- GAMESS and CRYSTAL for mean-field
- Will decribe newish methods as we go.

#### TMO molecules

- Two atom molecules: small, good for benchmarks
- TM-O bond is present from ferroelectrics to supernova remnants
- DFT and HF describe them poorly..

Want a scalable, accurate method on these materials.

#### Energetics: Binding energy of TiO



# Results depend on the nodes Hartree-Fock nodes are poor B3LYP nodes are good d-p hybridization is important

#### Energetics: Binding energy of TiO



Results depend on the nodes

B3LYP nodes are good

Hartree-Fock nodes are poor

d-p hybridization is important



#### Lucas K. Wagner Quantum Monte Carlo for Transition Metal Oxides

#### How's the density in QMC?



- B3LYP enhances hybridization over HF
- QMC(HF) also enhances hybridization
- QMC(B3LYP) enhances hybridization even more
- HF nodes limit hybridization in QMC

#### How's the density in QMC?



- B3LYP enhances hybridization over HF
- QMC(HF) also enhances hybridization
- QMC(B3LYP) enhances hybridization even more
- HF nodes limit hybridization in QMC

#### How's the density in QMC?



- B3LYP enhances hybridization over HF
- QMC(HF) also enhances hybridization
- QMC(B3LYP)
   enhances
   hybridization even
   more
- HF nodes limit hybridization in QMC

#### Orbital dependence of the fixed-node approximation



#### **Binding Energies of TMO Molecules**



Geometry minimization

Non-energy properties

Conclusion

#### BaTiO<sub>3</sub>: Ferroelectric



#### BaTiO<sub>3</sub> challenges

- Ferroelectric effect driven by the Ti-O interaction which is very sensitive to the lattice constant
- LDA underestimates volume by 1%, suppresses polarization by 50%
- GGA overestimates volume more
- Distortions, etc are ok in DFT if the volume is set to experimental

Geometry minimization

Non-energy properties

Conclusion

#### BaTiO<sub>3</sub>: cohesive energy



- Orbitals matter. More d-p hybridization than Hartree-Fock.
- Lattice constant?



density versus Hartree-foch

#### Minimum Energy Geometry A Bayesian Approach

Idea: Use accurate (but noisy) QMC energies to find equilibrium geometry.

#### Theory

- Given data *D* and model *M*:  $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$
- *P*(*M*): Prior distribution
- P(D): Normalization

• 
$$P(D|M) \propto \prod_i exp(\frac{-(M(x_i)-D(x_i))^2}{(2\sigma(x_i)_D^2)})$$

#### An example Standard fitting versus Bayesian



• 
$$M(x) = a + bx + cx^2$$

- $pdf(min) = \iiint P(M|D)\delta(min \frac{-b}{2c})da \ db \ dc$
- Standard fitting underestimates the uncertainty!

#### Other uses for Bayesian analysis

- Predicting best next point
- Model comparison
- What is the probability that *E*<sub>min</sub> of phase A is larger than *E*<sub>min</sub> of phase B?

#### TMO Molecules: Minimum Bond Lengths



#### BaTiO<sub>3</sub>: Cubic Volume



- Same method as used on TMO molecules
- 320 electrons, 960 dimensional integrals

Lucas K. Wagner Quantum Monte Carlo for Transition Metal Oxides

#### **Reptation Monte Carlo**



RMC walker on TiO

#### Algorithm sketch

- Need the pure distribution Φ<sub>0</sub>Φ<sub>0</sub>
- Walkers are paths:

$$s = \{X_0, X_1, \ldots, X_{n-1}, X_n\}$$

• Sample the path distribution  $\Psi_T(X_0)G(X_0, X_1, \tau) \dots G(X_{n-1}, X_n, \tau)\Psi_T(X_n)$ 

$$\operatorname{pdf}(X_0) = \operatorname{pdf}(X_n) = \Psi_T \Phi_0$$
  
 $\operatorname{pdf}(X_{\frac{n}{2}}) = \Phi_0^2$ 

#### Performance of Slater-Jastrow wave function



RMC mostly overestimates the dipole moment..why?

Lucas K. Wagner Quantum Monte Carlo for Transition Metal Oxides

#### Case study: TiO



- Determinant weights optimized in VMC
- Significant energy gain, change in dipole moment
- Close to CC number, but still higher than experiment.

#### TiO dipole moment in detail



- Seems closer, but quite far away
- PSP error  $\sim$  0.1 Debye..

Lucas K. Wagner Quantum Monte Carlo for Transition Metal Oxides

#### Conclusion

New Methods:

- First application of RMC to heavy atoms
- Bayesian fitting is versatile and correct

#### Performance on TMO's:

- Energetics, with a good trial function, are wonderful
- For dipole moments, it looks more challenging. More calculations would be interesting.
- Physics about correlation:
  - Enters heavily in the d-p hybridization of TMO's
  - Is fundamentally important: it affects the one-particle density significantly

#### Conclusion

New Methods:

- First application of RMC to heavy atoms
- Bayesian fitting is versatile and correct

Performance on TMO's:

- Energetics, with a good trial function, are wonderful
- For dipole moments, it looks more challenging. More calculations would be interesting.

Physics about correlation:

- Enters heavily in the d-p hybridization of TMO's
- Is fundamentally important: it affects the one-particle density significantly

#### Conclusion

New Methods:

- First application of RMC to heavy atoms
- Bayesian fitting is versatile and correct

Performance on TMO's:

- Energetics, with a good trial function, are wonderful
- For dipole moments, it looks more challenging. More calculations would be interesting.

Physics about correlation:

- Enters heavily in the d-p hybridization of TMO's
- Is fundamentally important: it affects the one-particle density significantly

#### Thanks..

## Money from NSF GRF. Help from Lubos Mitas, Jeff Grossman, and many others. Computation from NCSA and NCSU PAMS cluster.