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Before the feature presentation
An advertisement

www.qwalk.org : open-source
QMC code
C++, nice, very extensible
Long list of features

www.nanohub.org : pays part
of my salary
Lots of useful tools and
learning material, including
QMC!
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In this talk

Goal
Method to calculate the properties of transition metal (TM)
materials.
D-orbitals behave very differently from S and P–how?
References:

JCP 126 034105 (2007)
J. Phys: Condensed Matter topical review coming very soon
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Methods

DFT and DMC, mostly
Small core (Ne) ECP on TM
TZ basis set
QWalk (www.qwalk.org) for all QMC calculations
GAMESS and CRYSTAL for mean-field
Will decribe newish methods as we go.
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TMO molecules

Two atom molecules: small, good for benchmarks
TM-O bond is present from ferroelectrics to supernova
remnants
DFT and HF describe them poorly..

Want a scalable, accurate method on these materials.
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Energetics: Binding energy of TiO

Results depend on the nodes
Hartree-Fock nodes are poor
B3LYP nodes are good
d-p hybridization is important

Hartree-Fock orbital

B3LYP orbital
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How’s the density in QMC?
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HF nodes limit
hybridization in
QMC
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Orbital dependence of the fixed-node approximation
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Binding Energies of TMO Molecules
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Experiment
DMC
LDA
UCCSD(T)

ScO TiO VO CrO MnO

Method RMS deviation
LDA 2.19
UCCSD(T) 0.31
DMC 0.21
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BaTiO3: Ferroelectric

Cubic phase

Ba
Ti
O

Ti-O distance
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Polarized Polarized
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BaTiO3 challenges

Ferroelectric effect driven by the Ti-O interaction which is
very sensitive to the lattice constant
LDA underestimates volume by 1%, suppresses
polarization by 50%
GGA overestimates volume more
Distortions, etc are ok in DFT if the volume is set to
experimental

Lucas K. Wagner Quantum Monte Carlo for Transition Metal Oxides
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BaTiO3: cohesive energy

Orbitals matter. More d-p
hybridization than
Hartree-Fock.
Lattice constant?

LDA density versus Hartree-fock
density
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Minimum Energy Geometry
A Bayesian Approach

Idea: Use accurate (but noisy) QMC energies to find
equilibrium geometry.

Theory

Given data D and model M: P(M|D) = P(D|M)P(M)
P(D)

P(M): Prior distribution
P(D): Normalization

P(D|M) ∝
∏

i exp(−(M(xi)−D(xi))2

(2σ(xi)2
D)

)
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An example
Standard fitting versus Bayesian
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Bayesian
Standard fitting

M(x) = a + bx + cx2

pdf(min) =
∫∫∫

P(M|D)δ(min − −b
2c )da db dc

Standard fitting underestimates the uncertainty!
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Other uses for Bayesian analysis

Predicting best next point
Model comparison
What is the probability that Emin of phase A is larger than
Emin of phase B?
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TMO Molecules: Minimum Bond Lengths
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BaTiO3: Cubic Volume

Same method as used on TMO molecules
320 electrons, 960 dimensional integrals
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Reptation Monte Carlo

RMC walker on TiO

Algorithm sketch
Need the pure distribution Φ0Φ0

Walkers are paths:
s = {X0, X1, . . . , Xn−1, Xn}
Sample the path distribution
ΨT(X0)G(X0, X1, τ) . . . G(Xn−1, Xn, τ)ΨT(Xn)

pdf(X0) = pdf(Xn) = ΨTΦ0

pdf(X n
2
) = Φ2

0
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Performance of Slater-Jastrow wave function
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RMC mostly overestimates the dipole moment..why?
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Case study: TiO

Determinant weights optimized in VMC
Significant energy gain, change in dipole moment
Close to CC number, but still higher than experiment.

Lucas K. Wagner Quantum Monte Carlo for Transition Metal Oxides



Introduction Energetics: performance of QMC Geometry minimization Non-energy properties Conclusion

TiO dipole moment in detail
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Experiment

Seems closer, but quite far away
PSP error ∼ 0.1 Debye..
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Conclusion

New Methods:
First application of RMC to heavy atoms
Bayesian fitting is versatile and correct

Performance on TMO’s:
Energetics, with a good trial function, are wonderful
For dipole moments, it looks more challenging. More
calculations would be interesting.

Physics about correlation:
Enters heavily in the d-p hybridization of TMO’s
Is fundamentally important: it affects the one-particle
density significantly
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Thanks..

Money from NSF GRF. Help from Lubos Mitas, Jeff Grossman,
and many others. Computation from NCSA and NCSU PAMS
cluster.
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