Point Defects in TiO₂

Imperial College

100 years of living science

100

Kilian Frensch Condensed Matter Theory Department of Physics Imperial College London

July 27th, 2007

Acknowledgements

- Mike Finnis
- Matthew Foulkes
- Nick Hine
- Nicole Benedek

Outline

- I. Introduction and background
 - I. Motivation
 - II. TiO_2 About
 - III. TiO_2^- Bulk Geometry
 - IV. TiO_2^- Defects
 - I. NN Relaxations
- II. Defect Formation Energies
 - I. DFT Results
- III. Issues
 - I. Semi-core Electrons
 - II. Supercell Approximation
 - I. Circumventing the Coulomb Divergence & Correction Schemes
- IV. Conclusions and future work

Motivation

- Nick has been researching Al₂O₃, I am currently looking into TiO₂, and have begun exploring the possibilities of research into ZrO₂, all having numerous technological applications
- TiO₂'s optical properties render it a popular white pigment, and it is also used in electrical applications such as gas sensors or in electrocatalysis, as a semiconductor photocatalyst, or corrosion-protective coating
- Many properties, such as catalytic behaviour and the growth and dissolution rates of the oxide in electro-chemical cells, depend critically on the electronic density of states in the band gap
- The properties and performance of TiO₂ have been seen to be affected by changes in the electronic structure when point defects are created in the bulk or at the surface¹
- Defect formation energies can tell us what the most stable defects are at certain temperatures, pressures, and at differing chemical potentials
- Very few quantitative predications of point defect energies exist for TiO₂
- Only very few QMC calculations have been done for metal oxides, and those that have been done promise improvement over DFT²

TiO₂

- Three phases: Rutile, Anatase, Brookite
 Rutile phase: tetragonal structure, whereby Ti is surrounded by 6 O atoms in an octahedral configuration and the stacking of octahedra results in threefold coordinated O atoms
- High oxidising power results in *n*-type doping and high conductivity
- Very durable
- High refractive index and very white (pigment)
- Bandgap ~3.2eV
- Naturally occurring is almost always reduced
 General agreement that reduced rutile is oxygen deficient¹
- Ti interstitials prefer to diffuse along [001] channel rather than in the [100] or [010] directions

Method

- 2x2x1 72 atom supercell containing 384 electrons
- DFT

 CASTEP, LDA with 3000eV plane-wave cutoff, Trail and Needs DF pseudopotentials

QMC

•CASINO, VMC and DMC with Jastrow factor including separate χ terms for each NN, defect site

TiO₂ - Bulk Geometry

	a(Å)	c(Å)	Ti-O short (Å)	Ti-O long (Å)
LDA 400eV	4.547	2.927	1.933	1.952
	(-1.0%)	(-1.1%)	(-0.8%)	(-1.4%)
LDA 1000eV	4.603	2.976	1.953	1.989
	(+0.2%)	(+0.6%)	(+0.3%)	(+0.5%)
GGA-PBE	4.629	2.963	1.957	1.996
400eV	(+0.7%)	(+0.1%)	(+0.5%)	(+0.8%)
Experiment ³	4.594	2.959	1.948	1.98

Jmel

TiO₂ - Defects

TiO₂ - Geometry Relaxation

	First NN Relaxation	Second NN Relaxation	
	Distance (Å), %-change	Distance (Å), %-change	
V _o original	1.996(Ti _{1NN}), 0%; 1.957 (Ti _{1NN}), 0%	2.964 (O _{2NNa}), 0%; 2.795 (O _{2NNb}), 0%	
V _o X	+13.9%; +14.2%	-0.8%; -2.4%	
V _o ·	+12.8%; +12.9%	-0.8%; -3.2%	
v _o "	+13.8%; +13.6%	-1.0%; -2.4%	

Defect Formation Energies

- Concentration of a defect species can be expressed in terms of the Gibbs free energy of defect formation ΔG_f and the accompanying entropy s_v
- We want to find and minimise ΔG_f
- For crystal formation at constant *P*, *T*:

$$\Delta G_f = E^{total}(\alpha, q) - \sum_{\alpha} n_{\alpha} \mu_{\alpha}(T, P)$$

We substitute for the energy of a perfect supercell of bulk crystal:

$$E^{total}(perfect) = \sum_{\alpha} (n_{\alpha} - \Delta n_{\alpha}) \mu_{\alpha}(T, P)$$

 We then obtain the Gibbs free energy of defect formation as a function of defect species α in charge state q, at temperature T and oxygen partial pressure P:

$$\Delta G_f(\alpha, q, T, P) \cong E^{total}(\alpha, q) - E^{total}(perfect) - \Delta n_{\alpha} \mu_{\alpha}(T, P) + q\varepsilon_F$$

we want to find and minimise this, as a function of ε_F

• The last term in ΔG_{f} .

 $\varepsilon_F = \varepsilon_F^{from VBM} + \left(E^{total}(perfect) - E^{total}(+1) + V^{av}(defect) - V^{av}(perfect)\right)$

is used to define the arbirtrary zero in the potential for the case of a charged defect and incorporates the average potential scheme

• We determine the oxygen chemical potential according to the work of Finnis et al.:

$$\mu_O(T,P) = \frac{1}{2} \Big[\mu_{TiO_2}^0 - \mu_{Ti}^0 - \Delta G_{f,TiO_2}^0 \Big] + \Delta \mu_O^0(T) + \frac{1}{2} k_B T \ln \Big(\frac{P}{P^0} \Big) \Big]$$

- We can calculate the Ti chemical potential from Ti pure metal, μ_{TiO_2} is the calculated total energy per TiO₂ unit, we get $\Delta G^{o}_{f,TiO_2}$ (the Gibbs formation energy of the oxide per mole in the standard state) from thermodynamic data, and we work at standard pressure
- The chemical potentials must fulfill the equilibrium dependency:

$$\mu_{Ti} + 2\mu_O = \mu_{TiO_2}$$

 Due to PBCs, we introduce an artificial long-range interaction between the defect and its periodic images

Results - DFT

- Most stable charge state dependent on ε_F
- Confirmed previous calculations that highest charge states are not necessarily the most stable at $\varepsilon_F = E_d/2$
- Oxygen Vacancy
 +1 state most stable for half of bandgap, afterwards neutral defect, verifying published results¹
- Oxygen Interstitial
 Neutral state lowest-lying

Oxygen Vacancy Formation Energy

Oxygen Interstitial Formation Energy

Results - DFT

- Titanium Vacancy
 Agrees with previous prediction that -4 charged vacancy most stable for large section of bandgap
- Titanium Interstitial
 +4,+3,+2 charged Titanium interstitials all low-lying defect states
 Disagrees with photoelectron spectroscopy where +3 state is found 0.7-0.9eV below CBE

Titanium Interstitial Formation Energy

Results - DFT

Shifting μ_0 from the oxidation to the reduction limit, while $\varepsilon_F = E_q/2$ and based on the equilibrium condition of:

$$\mu_{Ti} + 2\mu_O = \mu_{TiO_2}$$

the formation energies of Ti_i and V_o are found to decrease, while those of V_{Ti} and O_i increase For the entire range of μ_o , the neutral charged O_i and the +1 charged V_o are found to be the most stable defects

Reduced TiO₂ known to be oxygen deficient

Issues - Semi-core Electrons

- Neglecting 6 3p semi-core electrons for Ti results in quite uniform error of ~0.5eV in formation energy of separate defect states, without majorlyshifting transition between stable defect charge states
- This error is relatively large compared with the defect formation energies of ~7-8.5eV
- Treatment would require adequate Ti pseudopotential for use within CASINO which includes these electrons

•For 72-atom supercell used, this would mean 144 extra electrons

Ideally need larger supercell to keep defects further apart, but this would then mean the inclusion of even more electrons

Issues - Supercell Approximation

Issues - Supercell Approximation

- PBCs introduce artificial long-range electrostatic and strain interactions between periodic defect images and do not produce the right polarisation energy in the bulk surrounding the defect
- Tails of potentials generated by local electrostatic moments of the defect overlap cell boundaries, corrupting the local potential of an "isolated" defect
- Can compute formation energies in different sized supercells and extrapolate to an infinite sized supercell, corresponding to an isolated defect, however computationally costly as we require at least 3 separate calculations
- Alternatively, compute formation energy in a single supercell and use an analytic correction formula to remove the spurious electrostatic contributions
 - These correction formula differ between methods used to circumvent the Coulomb divergence. Most commonly, the Uniform Background Charge (UBC) method is used. Schultz⁶ has also presented the Local Moment Counter Charge (LMCC) method.

Both display different dependences on supercell size, and different analytic formula have been proposed to remove their spurious electrostatic energy contributions

	UDC		
•	 Jellium background used to artificially screen the <i>q</i>/<i>r</i> potential from the charge <i>q</i> in the defect Overscreening overestimates the stability of the charged defect as the 	•	Separate aperiodic model defension $n_{LM}(r)$ from supercell charge, we electrostatic moments match t to a certain order $\rho(r) = \rho_{LM}(r) + \rho'(r)$

Corresponds to metallic screening

ect charge whose the system's up

$$\rho(r) = \rho_{LM}(r) + \rho'(r)$$

- Coulomb energy of remaining periodic charge is neutral and momentless
- $\phi_{LM}(r)$ solved with local BCs $(q/r \rightarrow 0$ as $r \rightarrow \infty$)
- $\phi'_{def}(r)$ solved from neutral defect density $\rho'_{def}(r)$ in PBCs
- Potential due to net charge truncated at Wigner-Seitz cell around defect so it doesn't corrupt the potential of neighbouring cells
- Corresponds to limit where screening is present ourside the supercell

 Both display different dependences on supercell size, and different analytic formulae have been proposed to remove their spurious electrostatic energy contributions

UBC	LMCC		
	• Problem: net charge at defect induces screening in bulk crystal that is not cont in supercell, can estimate using simple dielectric continuum: $E_P = \left(1 - \frac{1}{\varepsilon}\right) \frac{q^2}{R_{Jost}}$ This can then be reformulated to be inc in the fitting parameter A_1 for a polynom	ained luded nial fit	
	\oplus		

Fitting to Polynomial (for UBC: Makov-Payne)

• For both methods, applying a correction formula of the form:

$$E^{f}[D;L,E_{F}] = E^{f}[D;L \rightarrow \infty,E_{F}] + \frac{A_{1}}{L} + \frac{A_{3}}{L^{3}} + \frac{A_{5}}{L^{5}}$$

provides extrapolations to the infinite supercell which are in agreement

- The fitted parameters, however, differ from defect to defect, appearing to reduce the chances that a simple, analytic formula can accurately correct supercell formation energies⁴
- In addition, the success of the fits is also defect specific
- Many studies have used relaxed defect structures, which may be incorrect as they are influenced by strain effects
- When Makov-Payne is used together with potential realignment, the two schemes usually produce a large overestimate of the required correction⁵

Conclusions and future work

- Found very strong lattice relaxations for both neutral and charged defects
- Found usual LDA underestimation of bandgap (2.55eV cf. 3.2eV experimentally)
- Found dominant defect species to be the +1 charged V_O and the neutrally charged O_i
- Found V_{Ti} formation energies to be several eV higher than either Oxygen defect
- Disagreement between calculated Ti_i +3 charged defect state and experimental observations from photoelectron spectroscopy
- Found that semi-core electrons cannot be neglected in Titanium pseudopotential as they result in a 0.5eV error in the defect formation energies
- Current QMC calculations will provide more insight into what the most stable defect charge states are and their ordering, as well as whether DFT is, for example, overbinding (Al₂O₃)
- For accurate absolute values of the defect formation energy, will need to include semi-core electrons in Ti pseudopotential, as well as use larger supercell
 But:
 - ■For 2x2x1 supercell containing 72 atoms, this means N_e=384+144=528
 - •For 2x2x2 supercell containing 144 atoms, this means N_e =768+288=1056
- Energies of migration barriers are the next step
- Much work is to be done on understanding and potentially creating a more universal correction scheme to be applied after circumventing the Coulomb divergence in the supercell approximation

- 1. He, Jun, Sinnott, Susan: *Ab Initio* Calculations of Intrinsic Defects in Rutile TiO₂. Journal Am. Ceram. Soc. **88** 737-741 (2005)
- 2. Alfè, D, Gillan, MJ: Schottky defect formation energy in MgO calculated by diffusion Monte Carlo. Phys. Rev. B **71**, 220101 (2005)
- 3. Abrahams SC, Bernstein JL. Rutile: Normal probability plot analysis and accurate measurement of crystal structure. J. Chem. Phys. **55**, 3206 (1971)
- Wright, AF, Modine, NA: Comparison of two methods for circumventing the Coulomb divergence in supercell calculations for charged point defects. Phys. Rev. B 74, 235209 (2006)
- 5. Castleton, CWM, Höglund, A, Mirbt, S: Managing the supercell approximation for charged defects in semiconductors. Phys. Rev. B **73**, 035215 (2006)
- 6. Schultz, PA. Phys. Rev. B 60, 1551 (1999).