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Numerical Integration

e To solve a Many-Body Quantum mechanics problem we need to integrate in a lot of dimensions
Estimates of integrals of unknown functions for » sample points in D dimensions:
‘ L 1\P/P
e Standard ‘evenly spaced grid’ gives € X <;>
_ 1\ 1/2
e Monte Carlo gives € X <;>
Both assume sampled function is ‘well behaved':

e Standard ‘evenly spaced grid’ assumes function is smooth

e Monte Carlo assumes CLT is valid
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Quantum Monte Carlo (VMC)

Sample 3N dimensional space with PDF P(R)

S¢2E /P (WH[Y)+Y

Est [Eiot] = S2/P () + X

where Ej, = ¢_1ﬁ¢.

Simplest case is ‘Standard Sampling: Choose P(R) = Ay(R)?, then

Est [Fy] = %ZEL _ WlHW) |y

(Y1)

e \V is the random error in a sum of random variables, so what is its distribution?

e |F the CLT is valid then it is Gaussian with mean 0, and variance 0/7“1/2.
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3N — 1 dimension

Why?: Easier to deal with the general case analytically

A change of the random variable from spatial to energy:
Etot — /‘/¢2ELd3NR//‘/¢2d3NR

_ / " Pa(E)EdE

with
P(R)

Py (E :/ Y pN-1R
w(E) E=E;, |VrEL|

e A histogram of F/;, approximates the ‘seed’ PDF sz

e |Vr F1| results from curvilinear co-ordinates and change of variables.

e Useless numerically, but useful analytically.
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What can we say about P2?

Singularities in the local energy:

Wb 1 Z
BR) = Syl s Z
i<j 'iJ i i
= i
3 l
o' I
o iHI
N |
| Iv—

]
e /1 (R) = E, if the trial wavefunction, 1), is exact

e Enforce Kato cusp conditions — no Coulomb singularities
e Nodal surface is 1) = 0, and is 3N — 1 dimensional
e Kinetic energy part gives singularity on a 3N — 1 dimensional surface

— Type Il singularities provide information about P,z for large | E|
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What can we say about P2?

P(R) B
PolE :/ ) sN-IR
w2 (E) oo, Vel

‘F

nodal surface
v o= a5+ ...
Ep = b.ST +...
PR)/|VE| = ST+ ...
Pp(E) = d 4B+ ...

or more completely

€1

Pp(E) = (E — Ey)™* (eo + R

+> |E| > Ej
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Example: All-electron isolated Carbon atom

e Jastrow + 48 determinants + backflow:

v =e’®N"q, D! (R)D)(R) with R =R/(R)
100 -

1072

O'PwQ (EL)

1076

Estimated seed probability density function

e 93% correlation energy at VMC level

. 3 o
Also shown is 2 ————1, and a Normal distribution
T ot +(E—p)
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Random error in total energy estimate

1
(E1+...+ E,)

r

Est [Etot] =

Product of probability of 7~ samples energies that add up to r F;,; — convolution integrals

Pr:2(2Etot) — /P¢2 (El)P¢2(E2)(S(E1 ‘I— EQ — 2Et0t)dE1dE2 — P¢2 * P¢2
PT’(TEtot) = P¢2*P¢2*...*P¢2

e Take Fourier transform of Py (E)
e Take the 7" power
e Take the inverse Fourier transform

e Rescale some variables to get the PDF of averages instead of sum
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PDF of estimate of Total energy

100 [ | |

U/ﬁpr<Et0t)

1072

-10 - 0 D 10

(Brot — p)/r/0
e Approximate PDF from 10* estimates of total energy, with 7 = 1073

e For small | E/|, PDF is dominated by \/%e—gﬁ/z

e For large | E/|, PDF is dominated by g%l/x‘l (A = 1 for Carbon trial wavefunction)

o CLT is true In its weakest form
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PDF of estimate of the ‘Residual Variance’, v

Optimisation of wavefunctions using the ‘residual variance’, v
(H - Etot) ¢ =0 = (EL - Etot) ¢
v = [§2dR > 0, and zero for exact 1)

e To optimise the wavefunction v is often minimised

e Analyse effect of tails, as before:

P = 1 [”_"2]2@@ [U—UT

T 27 2y 2y
_ 213 _ 213
_ 9 vV—o0 vV—o0
X |—sgn |U — K + K
g [ o } 1/3 2 2/3 2
with the ‘width’ of the PDF decided by the magnitude of the tails
1/3
B 6)\2 / )
Y=\l © (1)
T

e This limit theorem is a case of a gives ‘Levy skew alpha-stable distribution’

e ‘CLT’ is a special case of the Levy skew alpha-stable distribution
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PDF of estimate of the ‘Residual Variance’, v

109
=
@b 1073 —
5 -
\
\\\
_
10— LU
0 50

(v—0%)/(27)

e Approximate PDF from 10* estimates of residual variance, with 7 = 103

e Small v, x *’. Large v o 1/25/2

e PDF has no variance, 7y has no vigorous statistical estimate and is & r1/3

TTI Paoe 11



TTI

e CLT is valid in its weakest form for the total energy
e CLT not valid for residual variance
e CLT is likely to be invalid for estimates of other physical quantites

® Because: ¢2 samples E';, rarely where it is largest, at the nodal surface
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What about other estimates? Generally given by

1.
EStT [X] = ; Z LUL(Rn),
n=1

for some xy,
e.g.
e Non-local pseudpotentials — weak CLT (:I:_4 tails decay with r)
e Kinetic energy — ‘Stable Law’ with 275/2 tails
e Hellmann-Feynman forces — ‘Stable Law’ with 25/2 tails on LHS and RHS
e Relativistic corrections — ‘Stable Law’ with /2 tails
e Linearised basis optimisation — ‘Stable Law’ with 275/2 tails

Can the CLT be reinstated ?
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Residual sampling

Instead of sampling with P = A1)?, sample with P = At)? /w, then

SwEy _ (WH|[Y) +Y
Sw o (PP) +X

ESt [Etot] =

and the residual variance,

2 Y w(EL = Eie)?  [V(EL — Epor)?dR +Y
Est U(s dR] _ L _ T

Choose the weighting function

62

w(EL) - (EL L EO)Q _|_€2

to ‘interpolate’ beween sampling the numerator and denominator perfectly.
e No singularities, and no power law tails

e Quotient of two correlated random variables, each a sum of random variables
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Fieller's Theorem

® (f12, j171) that give Est = 0/ 111
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Fieller's Theorem

e (112, pu1) that give Est = o /1y

e Ellipse containing 39% of probability from covariance matrix and bivariate CLT
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Fieller's Theorem

e (112, p11) that give Est = o /11y

e Ellipse containing 39% of probability from covariance matrix
e Wedge that contains 68.3% of probability

= my < pg/u1 < msy with confidence 68.3%
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Estimate of total energy

-37.88 -37.83 -37.78
Etot (a.u.)

Estimated PDF from 10? total energy estimates.
e Residual sampling (filled) and standard sampling (unfilled) are not significantly different
e Residual sampling reduces error by ~ 30%
e For other systems standard sampling may give ‘power law’ outliers (depending on \)

e For all systems residual sampling does not give ‘power law’ outliers
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Estimate of residual variance

102 + i
7
=
2100} ]
5l |
@

10_1 |ﬂ ﬂﬂ |ﬂ ﬂ

0 0.1 0.2

Vars: (a.u.?)
Estimated PDF from 102 residual variance estimates.

e Residual sampling and standard sampling are very different
e Standard sampling shows the v~°/2 tails and outliers expected
e Residual sampling gives well defined confidence limits for estimate via the bivariate CLT

e Standard sampling does not
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Trial function optimization
e Choose an variational principle — ‘Optimate function’ of parameters {a}
e Estimate this function using Monte Carlo sampling — ‘Correlated sampling’

e Find minimum of this function, for example

0.058 , ,
0.056 _W_
W
g
0.054 _M: et |
T —
e M
0.052 T ——— b —
] ] ]
-0.1 -0.075 -0.05 -0.025
o

So, what is the ‘random error’ in the estimated ‘Optimate function’, O({a})?
e What is the PDF of the estimated O({«}) at a given {a/}?

e Does the estimated O({«}) statistically converge for large r?
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Estimate of Optimate
Many ‘optimates’ are possible,

Example 1: Total energy variational principle, O({a} = (Mﬁlh@/(zﬂhﬂ)

Est, [/ ¢2.FL odR]
Est, [/ ¢2dR]

Est. [O({a})] =

2

Standard sampling: samples distributed as Py;q = &0

(Va/Va-ELa)
(W2 V%)

Est, [O({a})] =

For & = «yy nodal singularity in the averaged variable is Sll:
e twosided x~* tails in the ‘seed’ distribution

e weak CLT is valid

For o # vy nodal singularity in the averaged variables is 512
e twosided z~°/2 tails in the ‘seed’ distribution

e ‘Mean function’ exists in limit 7 — o0

e CLT is invalid, Stable distribution with || ~5/2 tails results
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More completely, for the total energy as the optimate O(oz) and standard sampling the estimated

function takes the form

_aotai(e—ao) far(o— )’ + ...
Est [O(a)] = bo + b1(a — ag) + bi(ar — ag)* + ...

where (a,,, b,) are random variables, and the CLT does not hold for n. > 0
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Residual sampling: samples distributed as P,.; = gm/waO

<¢?x/¢§o Way EL,a>

Est, [O({a})] = (V2 /2 wg,)

No singularity in averaged variables, so

e No power law tails

e CLT valid for all «v

e (a,, b, ) are normally distributed for all

Example: All-electron isolated Carbon atom

-37.5
e
S
s 38} |
K
_385 1 1 1 1
0 50 100 150
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Example 2: Variance minimisation O({a}) = (| (f[ — E0> : (ﬁ — E@) 1) /()

Standard sampling: For all o, 312 singularity at @Dao =0

e One sided power law tail, z~5/2

e No CLT is valid, replaced by ‘Stable law’
Residual sampling: No singularities

e CLT valid in its strongest form

1

Var|FE]

i
i
0.1 Hi
L
i

,,,,,,,,,,,,,,,,
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A more general optimate with residual sampling - samples distributed as P, = go/wao

Est, [O({a})] =

for different choices of f,,

Est [Etot]

-37.831
-37.832
-37.833
-37.834
-37.835
-37.836
-37.837
-37.838

<¢§/¢30 Wayg fn(EL,a - E0)>

<¢§/¢§0 -wao>

Total energy after optimisation

0 2

4

6

§ 10 12 14
n

16
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Est[Var]

TTI

0.066
0.064
0.062

0.06
0.058
0.056
0.054
0.052

0.05
0.048
0.046

‘Residual Variance’,

and magnitude of tails after optimisation
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Conclusions

e \We cannot assume the CLT is true for estimates in ‘standard sampling QMC’
e ‘r large’ enough must be shown to be true for each estimate in ‘standard sampling QMC’
e The CLT can be reinstated by using an alternative sampling strategy

e Random functions whose minimum gives ‘optimum’ wavefunctions are not generally normally dis-
tributed

e The residual sampling strategy can guarantee that the CLT is valid for estimates and optimisation

functions, as long as they exist

e With residual sampling optimisation functions can be chosen on physical grounds - to give a good

wavefunction at the nodal surface and small fixed node error in DMC
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