BEC-BCS Crossover in Cold Atoms

Andrew Morris

Theory of Condensed Matter

Cavendish Laboratory
University of Cambridge

Outline

- Theory
- Cold Atoms
- BEC-BCS Crossover
- Feshbach Resonance
- Universal number, ξ
- Previous Work
- Our method
- Modelling the interaction
- Pairing wavefunctions
- (Results)
- Total Energy
- Condensate fraction
- Future work

Theory

Cold Atoms

- Bose Gas
- BEC (1995)
- Quantised Vortices
- Propagation of solitons
- Fermi Gas
- e.g. ${ }^{6} \mathrm{Li},{ }^{40} \mathrm{~K},{ }^{2} \mathrm{H}$
- Vary the interaction strength between fermionic atoms...

BEC-BCS crossover

- Strong pairing :
- Weak pairing :

- Atoms form molecules of up and down spin
- These molecules are bosonic
- Bosonic molecules condense into BEC
- Atoms interact over a long range
- BCS theory
- Interesting point at unitarity :
- Dilute : Interatomic potential range << Interparticle distance
- Strongly interacting : Scattering length >> Interparticle distance
- How would this occur?

Feshbach Resonance

- 2 channels corresponding to different spin states
- Open channel (scattering process)
- Closed channel (bound state)
- Resonance occurs when Open and Closed channel energies are close

Atomic separation

Atomic separation

From Giorgini et al eprint cond-mat 0706.3360v1

- Channel energies are tuned by a magnetic field

Feshbach Resonance (2)

- The s-wave scattering length, a, diverges at resonance

Resonances in ${ }^{6}$ Li from Bourdel et al PRL 93050401

Universal Number, ξ

- At resonance the only relevant energy scale is that of a noninteracting gas

$$
E_{I}=\xi E_{F G}=\xi \frac{3 k_{F}^{2}}{10 m}
$$

- This value, ξ, is believed to be universal when $k_{F} R_{0} \ll 1$ where R_{0} is the effective range of interaction
- Throughout we measure the interaction strength in units of $1 / \mathrm{k}_{\mathrm{F}}$ a

Previous Work

- 2 previous studies using QMC,
- J. Carlson et al, PRL 91 050401: $\quad \xi=0.44(1)$
- G.E. Astrakharchik et al, PRL 93 200404: $\quad \xi=0.42(1)$

Symbols - QMC
(Dot-Bogoliubov
Dot-Dashed BCS theory
Black line SC-MF)
From Astrakharchik et al PRL 95230405.

- Other methods,

- Nishida et al: eprint cond-mat/0607835
$\xi=0.38(1)$

This Work

- Unequal particle numbers / unequal masses
$r=m \downarrow / m \uparrow$
$n=$ density of particles
$m=$ magnetisation

From Parish et al, PRL 98160402 (2007)

Normal Phase

Phase Separated

Magnetised Superfluid

This Work

- Unequal particle numbers / unequal masses
$r=m \downarrow / m \uparrow$
$n=$ density of particles
$m=$ magnetisation

From Parish et al, PRL 98160402 (2007)

The Model

Modelling the Feshbach Resonance

- Pauli-Exclusion Principle for parallel spin
-As interatomic potential << atom spacing, the exact form of the interaction is unimportant
- 2 types of interaction normally used...

- We use the Pöschl-Teller

Pairing Wavefunctions

- In QMC for a spin-independent operator we normally use a product of Slater determinants, one containing n up-spin and one m, down-spin one-particle orbitals, ϕ.

$$
\Psi=\mathrm{e}^{J}\left|\begin{array}{ccc}
\phi_{1}\left(r_{1 \uparrow}\right) & \cdots & \phi_{n}\left(r_{1 \uparrow}\right) \\
\vdots & \ddots & \vdots \\
\phi_{1}\left(r_{n \uparrow}\right) & \cdots & \phi_{n}\left(r_{n \uparrow}\right)
\end{array}\right|\left|\begin{array}{ccc}
\phi_{1}\left(r_{1 \downarrow}\right) & \cdots & \phi_{m}\left(r_{1 \downarrow}\right) \\
\vdots & \ddots & \vdots \\
\phi_{1}\left(r_{m \downarrow}\right) & \cdots & \phi_{m}\left(r_{m \downarrow}\right)
\end{array}\right|
$$

- However, we want a wave function that explicitly describes pairing

Pairing Wavefunctions (2)

- We now use only one Slater determinant. It contains only one type of orbital, ϕ, which is a function of the distance between up and down particles

$$
\Psi=\mathrm{e}^{J}\left|\begin{array}{ccc}
\phi\left(r_{1 \uparrow}-r_{1 \downarrow}\right) & \cdots & \phi\left(r_{1 \uparrow}-r_{n \downarrow}\right) \\
\vdots & \ddots & \vdots \\
\phi\left(r_{n \uparrow}-r_{1 \downarrow}\right) & \cdots & \phi\left(r_{n \uparrow}-r_{n \downarrow}\right)
\end{array}\right|
$$

- 3-types of ϕ have been tried

$$
\begin{aligned}
\phi & =\sum_{i=1} C_{i} \exp (i(r \uparrow-r \downarrow)) \\
\phi & \text { - Pairing Plane-waves } \\
\phi=\sum_{i=1} g_{i} \exp \left(\beta_{i}(r \uparrow-r \downarrow)^{2}\right) & \text { - Pairing Gaussians } \\
\phi & =\sum_{i=0} \alpha_{i}(r \uparrow-r \downarrow)^{i}
\end{aligned} \quad \text { - Pairing Polynomials }
$$

- And combinations of the above

Jastrow factor + Backflow

- Jastrow factor of Drummond et al PRB 70235119 (2004) (CASINO users, that's a Jastrow $U+P$)

$$
J=\sum_{l=1}^{L} \alpha_{l} r_{i j}^{l}+\sum_{A} a_{A} \sum_{G_{A}} \cos \left(G_{A} \cdot r_{i j}\right)
$$

- Backflow corrections of López Ríos et al PRE 74066701 (2006)

$$
\begin{gathered}
\Psi^{B F}(\boldsymbol{R})=\mathrm{e}^{J(\boldsymbol{R})} \Psi_{s}(\boldsymbol{X}) \\
\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{r}_{\boldsymbol{i}}+\xi_{i}(\boldsymbol{R})
\end{gathered}
$$

- We optimise the Jastrow, Backflow and orbital parameters using VMC and energy minimisation (Umrigar et al PRL 98110201 (2007))
- Conclude using DMC

Pairing Wavefunctions (3)

- Polynomial of order 20 + Jastrow U (Polynomial)
- Gaussian
- Gaussian + Jastrow U
- Gaussian + Jastrow U + Backflow (Eta)
- Gaussian + Jastrow U + Backflow (Eta) + Jastrow P $\quad E_{V M C}=0.4605(2)$
$E_{\text {DMC }} \sim 4 \%$ lower

Results

Present state

- Testing our ideas and CASINO with reproducing the value of ξ
- J. Carlson et al PRL 91 050401:
- G.E. Astrakharchik et al PRL 93 200404:

$$
\begin{aligned}
& \xi=0.44(1) \\
& \xi=0.42(1)
\end{aligned}
$$

- This work (to date)

VMC	$\xi \sim 0.45$
DMC	$\xi \sim 0.44$ (and still \Downarrow)

- Condensate fraction:
~ 0.4 - not right yet!

Where next?

- Verify / improve on ξ
- Calculate 1- and 2-body density matrices
- Calculate condensate fraction
- Move on to varied mass system

Acknowledgements

- Pablo Lopez-Rios
- Richard Needs
- Ben Simons
- Neil Drummond, John Trail, Alexander Badinski \& Matt Brown
- EPSRC

