Quantum Computation for Quantum Chemistry and Statistical Mechanics

Quantum Computation for Chemistry Applications

Alán Aspuru-Guzik

${ }^{a}$ Department of Chemistry and Chemical Biology, Harvard University

Towler Insitute
Vallico Soto, Italy

Outline

- What is quantum computation? Classical vs quantum computing.
- Quantum algorithms for finding protein low energy conformations
- Quantum algorithm for molecular energies

Quantum Simulation vs. Quantum Emulation

Quantum Simulation vs. Quantum Emulation

Why use quantum computers?

Quantum Simulation

- Represent the system using a classical computer
- Exact algorithm (FCI) scales exponentially with the basis set size
- Approximate algorithms (HF, DFT, QMC, CI, CC) scale polynomially

Quantum Emulation

- Map the wave function and Hamiltonian onto another quantum system (quantum computer)
- Exploit the quantum nature of the emulator to achieve polynomial-scaling exact algorithms

Quantum Simulation vs. Quantum Emulation

Why use quantum computers?

Quantum Simulation

- Represent the system using a classical computer
- Exact algorithm (FCI) scales exponentially with the basis set size
- Approximate algorithms (HF, DFT, QMC, CI, CC) scale polynomially

Quantum Emulation

- Map the wave function and Hamiltonian onto another quantum system (quantum computer)
- Exploit the quantum nature of the emulator to achieve polynomial-scaling exact algorithms

$|\phi \phi \phi\rangle$

Classical Computer

Quantum Computer

Stages of quantum computation

$1000>$
$1001>$
$1010>$
$1011>$
$1100>$
$1101>$
$1110>$
$1111>$

Quantum Algorithm

0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Measurement

Classical bits

- Always has a value of 0 or 1
- A bit can be copied
- Doesn't change if read
- Reading a bit doesn't affect other unread bits.

Classical bits

- Always has a value of 0 or 1
- A bit can be copied
- Doesn't change if read
- Reading a bit doesn't affect other unread bits.
classical bit quantum bit (qubit)

0

Quantum bits (qubits)

- All items on the left can fail.
- Superposition states
$\left(a_{0}|0\rangle+a_{1}|1\rangle\right)$
where $\sum_{i} a_{i}^{2}=1$
N -qubit state

$$
\begin{array}{lll}
a_{1}|0 \ldots 01\rangle & + & a_{2}|0 \ldots 10\rangle \\
a_{3}|0 \ldots 11\rangle & +\ldots+ & a_{n}|1 \ldots 11\rangle
\end{array}
$$

Measuring qubits

Bloch sphere representation

$$
w=a_{0}|0\rangle+a_{1}|1\rangle \equiv \cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle
$$

Properties

- Project system onto $|0\rangle$ or $|1\rangle$: $\operatorname{Pr}(0)=\left|a_{0}\right|^{2}, \operatorname{Pr}(1)=\left|a_{1}\right|^{2}$
- Probabilistic result: may require multiple measurements.

Classical gates

Example circuit: adder

Quantum gates

$$
-\mathrm{H}=1 / \sqrt{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Quantum circuits

Example circuit: quantum Fourier transform

Quantum Emulation

Feynman's Proposal

$$
\begin{aligned}
\left|\Psi^{m o l}\right\rangle & \rightarrow\left|\Psi^{Q C}\right\rangle \\
\hat{U}^{m o l}(t)=e^{-i \hat{H}^{m o l} t} & \rightarrow \hat{U}^{Q C}(t)=e^{-i \hat{H}^{Q C} t}
\end{aligned}
$$

Jordan-Wigner Transformation

Mapping of fermionic systems to spin systems and vice versa
R. Somma et al, Phys. Rev. A 65042323 (2002)

Quantum Emulation III

Jordan-Wigner transformations

Multi-zone Ion Traps

- Linear 4-rod trap

- Planar 3 electrode trap

J. Chiaverini, et al., Quant. Inf. Comp. 5, 419 (2005)
S. Seidelin, et al., Phys. Rev. Lett. 96, 253003 (2006)
K. Brown, et al., Phys. Rev. A 75, 015401 (2007)

Slide courtesy of
Ken Brown, Georgia Tech

Josephson-Junction superconducting qubits

Quantronics group, Saclay France

D-Wave Systems's device

Oxidized Silicon wafer using a Niobium trilayer process The Economist, February 15th, 2007 (Others: Nature, Wired, etc.)

D-Wave Qubit Coupler

arXiv:cond-mat/0608253

The physics

The Hamiltonian

Two-dimensional Ising model in a magnetic field (2DIMM):

$$
E\left(\sigma_{1}, \ldots, \sigma_{N}\right)=\sum_{j=1}^{N} h_{j} \sigma_{z}^{j}+\sum_{i<j}^{N} J_{i j} \sigma_{z}^{i} \sigma_{z}^{j}+\sum_{j=1}^{N} a_{j} \sigma_{x}^{j}
$$

where $\sigma_{z}^{i}=+1,-1$

Procedure

- Initialize in a highly quantum state (a_{j} large)
- Turn on couplings
- As you turn off a_{j} slowly
- Read-out the answer

The physics

The Hamiltonian

Two-dimensional Ising model in a magnetic field (2DIMM):

$$
E\left(\sigma_{1}, \ldots, \sigma_{N}\right)=\sum_{j=1}^{N} h_{j} \sigma_{z}^{j}+\sum_{i<j}^{N} J_{i j} \sigma_{z}^{i} \sigma_{z}^{j}+\sum_{j=1}^{N} a_{j} \sigma_{x}^{j}
$$

where $\sigma_{z}^{i}=+1,-1$

Procedure

- Initialize in a highly quantum state (a_{j} large)
- Turn on couplings
- As you turn off a_{j} slowly
- Read-out the answer

Adiabatic quantum computing

Adiabatic evolution

$$
\begin{gathered}
i \frac{d}{d t}|\Psi(t)\rangle=H(t)|\Psi(t)\rangle \\
H(t)=\left(1-\frac{t}{T}\right) H(0)+\frac{t}{T} H_{\text {problem }}
\end{gathered}
$$

Hilbert space

$$
\left|z_{1}\right\rangle \otimes\left|z_{2}\right\rangle \otimes \cdots \otimes\left|z_{n}\right\rangle
$$

The ground state of a given spin for the field in \mathbf{x} is:

Adiabatic quantum computing

Adiabatic evolution

$$
\begin{gathered}
i \frac{d}{d t}|\Psi(t)\rangle=H(t)|\Psi(t)\rangle \\
H(t)=\left(1-\frac{t}{T}\right) H(0)+\frac{t}{T} H_{\text {problem }}
\end{gathered}
$$

Hilbert space

$$
\left|z_{1}\right\rangle \otimes\left|z_{2}\right\rangle \otimes \cdots \otimes\left|z_{n}\right\rangle
$$

The ground state of a given spin for the field in \mathbf{x} is:

$$
\begin{gathered}
\frac{1}{\sqrt{(2)}}\left(|0\rangle_{1}+|1\rangle_{1}\right) \\
|\Psi(0)\rangle=\frac{1}{2^{n / 2}}\left|z_{1} z_{2} z_{3} z_{4}\right\rangle>
\end{gathered}
$$

Adiabatic evolution pictorially

What can it do?

Maximum independent set

Maximum Independent Set

What is it?

MIS of a graph
 A MIS is the largest subset of vertices of a graph for which there is no edge connecting the two.
 Computational complexity class
 This problem is NP-Hard (Nondeterministic
 Polynomial-time hard)

Maximum Independent Set

What is it?

MIS of a graph

A MIS is the largest subset of vertices of a graph for which there is no edge connecting the two.

Computational complexity
 class
 This problem is NP-Hard (Nondeterministic
 Polynomial-time hard)

Maximum Independent Set

What is it?

MIS of a graph

A MIS is the largest subset of vertices of a graph for which there is no edge connecting the two.

Computational complexity class

This problem is NP-Hard (Nondeterministic Polynomial-time hard)

$$
\begin{aligned}
& \text { wikipedia.org/ } \\
& \text { Independent_set }
\end{aligned}
$$

Exact Cover

- The problem Hamiltonian H_{p} is a the sum of a series of constraints, $H_{p}=\sum_{j} h_{c}$.
- Each constraint involves three bits: One must have the value 1, and the other two must have 0 value.

Farhi et al. Science 292 (2001) 472 and

Exact Cover

- The problem Hamiltonian H_{p} is a the sum of a series of constraints, $H_{p}=\sum_{j} h_{c}$.
- Each constraint involves three bits: One must have the value 1, and the other two must have 0 value.

Farhi et al. Science 292 (2001) 472 and arxiv. org/ 000770

Is there an advantage?

What could a device like this really do?

Careful!

- A quantum device like this one might do better than a classical one in certain random instances of the problem. It might not necessarily do better in other instances.
- Farhi has evidence of quadratic scaling up to 20 qubits for the SAT problem.
- We need to gather evidence for larger systems!

Simulation of classical systems

Somma et al. arxiv:quant-ph/0609216

- Adiabatic QC is very similar to Quantum Annealing (QA) (T=0). Introduce an external transverse magnetic field (e.g. in \mathbf{x}) that is lowered with simulation time.
- Simulated Annealing (SA). Introduce a simulation temperature T that is lowered with simulation time.
Kirkpatrick et al. Science 22 (1983) 671, wikipedia.org/Quantum_annealing

Lattice Protein Models

Mapping to 2D Ising Model in a Magnetic Field

Protein Lattice Model
Image: Prof. Backofen, Uni. Freiburg

The hydrophobic-polar (HP) model

Mapping to 2D Ising Model in a Magnetic Field

HP is Simplest Folding Code

h = \#HH contacts

OH
O P

h=0

$\mathrm{h}=4$

$\mathrm{h}=6$

Lau \& Dill Macromol 223986 (1989)

Slide Credit: Ken Dill

HP model Hamiltonian (structural constraints)

Primary structure

Energy $=0$

Energy $=100$

Hydrophobic interaction

Energy = 0

Energy =-2

Onsite repulsion

Energy = 0

Energy $=100$

- $2(N-2) \log _{2} N$ N -local variables are needed!
- But our Ising model is 2-local:
- We need to convert N-local hamiltonian to 2-local

2-local hamiltonian scaling

Hamiltonian reduction recipe

Replace terms of the form $\sigma_{1} \sigma_{2} \sigma_{3}$ with new ancilla variables τ_{i}, α_{i} :

$$
\sigma_{1} \sigma_{2} \sigma_{3} \rightarrow \tau_{1} \sigma_{3}
$$

Additional complexity

This procedure adds extra terms to the Hamiltonian, such as:

$$
\sigma_{1} \sigma_{2}-\left(\sigma_{1}+\sigma_{2}\right) \tau_{1}-2 \alpha_{1}\left(\sigma_{1}+\sigma_{2}-\tau_{1}+1\right)+\sigma_{1}+\sigma_{2}-\tau_{1}
$$

Scaling: $2(N-2) \log _{2} N \rightarrow 2(N-2)\left(N^{2}-\log _{2} N-1\right)$

2-local Hamiltonian scaling plot

About 50,000 "cheap" qubits would be needed to do what a classical computer can do right now.

Carrying out the experiment!

The simplest HP-model case system

Mapping the HP loop

- 2-local network obtained.
- We need a 52-bit device: 8 core bits and 46 ancilla bits.

Partitioning the problem

The simplest HP-model case system

Divide and "conquer"

Partitioning schemes (local search) do not guarantee finding the global minimum but have been used with success in numerical (quantum annealing) protocols.

Spin coupling network

Locally-optimized domains

Low energy conformations on a quantum computer

 Present and future
Currently

- Numerical simulation of 8192 8-qubit experiments was carried out.
- Colin Truncik at D-Wave is carrying out the experiments on their quantum device.

Near future

- Extend to continuum force fields on a lattice.
- Carry out Experiment for $\mathrm{H}_{2} \mathrm{O}$

Part II: Quantum Chemistry by Quantum Computation

A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, M. Head-Gordon, Science 309 (2005) 3741

The quantum chemistry problem

Molecular Hamiltonian

$$
\hat{H}^{m o l}=\hat{T}_{e}+\hat{T}_{Z}+\hat{V}_{z Z}\left(L_{p q}\right)+\hat{V}_{e e}\left(r_{i j}\right)+\hat{V}_{e Z}\left(R_{p i}\right)
$$

Full Configuration Interaction (FCI)

Wavefunction representation

Expand wavefunction in all HF determinants:

$$
|\psi\rangle=\alpha_{0}\left|\psi^{H F}\right\rangle+\sum \alpha_{a}^{b}\left|\psi_{a}^{b}\right\rangle+\sum \alpha_{a b}^{c d}\left|\psi_{a b}^{c d}\right\rangle+\ldots
$$

Hamiltonian: CI Matrix

Hamiltonian is given by all matrix elements between determinants Solving the matrix eigenvalue problem for this $\binom{2 K}{N} \times\binom{ 2 K}{N}$ matrix gives exact results within the given basis.

Basis Functions

Options

- Hydrogenic or Atomic (Slater Type Orbitals)
- Plane waves
- Wavelets
- Localized basis (e.g. Gaussians)

Gaussian Basis Sets

- Give compact wavefunction representations
- The exact solution within a good basis set is usually chemically accurate.

Basis Functions

Options

- Hydrogenic or Atomic (Slater Type Orbitals)
- Plane waves
- Wavelets
- Localized basis (e.g. Gaussians)

Gaussian Basis Sets

- Give compact wavefunction representations
- The exact solution within a good basis set is usually chemically accurate.

Gaussian Basis Sets

FCI by Phase Estimation

Overview

FCI by Phase Estimation

 Overview(1) Mapping between $\left|\Psi^{\mathrm{mol}}\right\rangle$ and $\left|\Psi^{Q C}\right\rangle$
(2) Preparation of $\left|\Psi_{0}^{Q C}\right\rangle$
(3) Construct $\hat{U}^{Q C}(t)$
(4) Energy Readout (recursive phase estimation algorithm)

FCI by Phase Estimation

Overview

(1) Mapping between $\left|\Psi^{\mathrm{mol}}\right\rangle$ and $\left|\Psi^{Q C}\right\rangle$
(2) Preparation of $\left|\Psi_{0}^{Q C}\right\rangle$

(4) Energy Readout (recursive phase estimation algorithm)

FCI by Phase Estimation

Overview
(1) Mapping between $\left|\Psi^{\mathrm{mol}}\right\rangle$ and $\left|\Psi^{Q C}\right\rangle$
(2) Preparation of $\left|\Psi_{0}^{Q C}\right\rangle$
(3) Construct $\hat{U}^{Q C}(t)$
(4) Energy Readout (recursive phase estimation algorithm)

FCI by Phase Estimation

Overview
(1) Mapping between $\left|\Psi^{\mathrm{mol}}\right\rangle$ and $\left|\Psi^{Q C}\right\rangle$
(2) Preparation of $\left|\Psi_{0}^{Q C}\right\rangle$
(3) Construct $\hat{U}^{Q C}(t)$

4 Energy Readout (recursive phase estimation algorithm)

The Phase Estimation Algorithm

R. Cleve et al, Proc. R. Soc. Lond. A 454313 (1998)
D. Abrams and S. Lloyd Phys. Rev. Lett. 835162 (1999)

Goal

Assume an unitary operator \hat{U}, with eigenvector $|\Psi\rangle$ such that

$$
\hat{U}|\Psi\rangle=e^{i 2 \pi \phi}|\Psi\rangle,
$$

estimate $0<\phi<1$.

Conditions

- Must be able to prepare a state with large overlap with the eigenstate
- Must be able to gate sequence U^{2}

The Phase Estimation Algorithm

R. Cleve et al, Proc. R. Soc. Lond. A 454313 (1998)
D. Abrams and S. Lloyd Phys. Rev. Lett. 835162 (1999)

Goal

Assume an unitary operator \hat{U}, with eigenvector $|\Psi\rangle$ such that

$$
\hat{U}|\Psi\rangle=e^{i 2 \pi \phi}|\Psi\rangle,
$$

estimate $0<\phi<1$.

Conditions

- Must be able to prepare a state with large overlap with the eigenstate
- Must be able to gate sequence $U^{2^{a}}$

Phase Estimation: The Fourier State

Choose $t ; E t=-2 \pi \phi$ $$
\hat{U}(t)|\Psi\rangle=e^{-i \hat{H} t}|\Psi\rangle=e^{-i E t}|\Psi\rangle
$$

Phase Estimation: The Fourier State

Choose t; $E t=-2 \pi \phi$

$$
\hat{U}(t)|\Psi\rangle=e^{-i \hat{H} t}|\Psi\rangle=e^{-i E t}|\Psi\rangle
$$

Phase Estimation: The Inverse Fourier Transform

The Quantum Fourier Transform

If $\phi=m / 2^{b}$

$$
\frac{1}{\sqrt{2^{b}}} \sum_{n} e^{i(2 \pi \phi) n}|n\rangle=\frac{1}{\sqrt{2^{b}}} \sum_{n} e^{i\left(2 \pi m / 2^{b}\right) n}|n\rangle
$$

Phase Estimation: The Inverse Fourier Transform

The Quantum Fourier Transform

If $\phi=m / 2^{b}$

$$
\frac{1}{\sqrt{2^{b}}} \sum_{n} e^{i(2 \pi \phi) n}|n\rangle=\frac{1}{\sqrt{2^{b}}} \sum_{n} e^{i\left(2 \pi m / 2^{b}\right) n}|n\rangle=Q F T|m\rangle
$$

Wavefunction Mapping, H_{2}

Compact Map
Direct Map

$$
\rightarrow q \& q|0111\rangle
$$

$$
\rightarrow f-R+|0110\rangle
$$

$$
\longleftarrow
$$

$$
\leftrightarrow P \leftrightarrow \uparrow P|0101\rangle \Leftarrow
$$

$$
\rightarrow \uparrow \rightarrow+|0100\rangle
$$

$$
\rightarrow \leftarrow \text { \&와 }|0011\rangle
$$

$$
\rightarrow \leftarrow R_{\leftarrow}|0010\rangle
$$

$$
\uparrow \leftarrow \rightarrow f|0001\rangle
$$

$$
\underbrace{\sim+\sim}_{|u\rangle} \underbrace{\sim}_{|g\rangle}|0000\rangle
$$

The Non-eigenvector Case

Algorithm Success Probability

- We must prepare the quantum computer in the analog of the molecular ground state.
- We may not be able to construct the ground state exactly.
- Given the trial function $\left|\Psi_{T}\right\rangle$, the algorithm succeeds with probability $\left|\left\langle\Psi_{0} \mid \Psi_{T}\right\rangle\right|^{2}$.

Options

- Use the Hartree-Fock state (for some cases,
- Adiabatic state preparation
- Other chemically motivated Ansatzes

The Non-eigenvector Case

Algorithm Success Probability

- We must prepare the quantum computer in the analog of the molecular ground state.
- We may not be able to construct the ground state exactly.
- Given the trial function $\left|\Psi_{T}\right\rangle$, the algorithm succeeds with probability $\left|\left\langle\Psi_{0} \mid \Psi_{T}\right\rangle\right|^{2}$.

Options

- Use the Hartree-Fock state (for some cases, $\left|\left\langle\Psi_{0} \mid \Psi_{0}^{H F}\right\rangle\right|^{2} \approx 0.9$)
- Adiabatic state preparation
- Other chemically motivated Ansatzes

Adiabatic State Preparation

If HF is a bad guess, construct the FCI solution adiabatically.

A Short Digression: The Adiabatic Theorem

M. Born et al, Zeit. f. Phys. 5165 (1928)
E. Farhi et al, quant-ph/0001106
W. van Dam et al, Proc. $42^{\text {nd }}$ IEEE Symp. (2002)

For

$$
\hat{H}(t)=\hat{H}^{H F}+\frac{t}{T}\left(\hat{H}^{F C I}-\hat{H}^{H F}\right)
$$

if

$$
\hat{H}(0)|\Psi(0)\rangle=E_{0}^{H F}|\Psi(0)\rangle
$$

and

$$
T \gg \max _{t}\left(\frac{\left.\left|\left\langle\Psi_{X}(t)\right| \hat{H}^{F C I}-\hat{H}^{H F}\right| \Psi_{0}(t)\right\rangle \mid}{\left(E_{X}(t)-E_{0}(t)\right)^{2}}\right)
$$

then

$$
\hat{H}(T)|\Psi(T)\rangle=E_{0}^{F C l}|\Psi(T)\rangle
$$

Adiabatic State Preparation for Molecules?

Arguments

- Molecules are insulators
- For a given system, we know a lot of properties of the eigenvalue spectrum from approximate classical methods.
- The gap is larger than the correlation energy
- At each stage in the Cl adiabatic state preparation the gap is large
- We conjecture that levels do not cross in between turning on n-tuple excitations and $n+1$ tuple excitations

State Preparation Results

H_{2}, STO-3G singlet manifold

Time Evolution

Molecular Hamiltonian

$$
\hat{H}=\sum_{X} \hat{h}_{X}=\sum_{p, q}\langle p| \hat{T}+\hat{V}_{N}|q\rangle \hat{a}_{p}^{\dagger} \hat{a}_{q}-\frac{1}{2} \sum_{p, q, r, s}\langle p|\langle q| \hat{V}_{e}|r\rangle|s\rangle \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}
$$

Trotter Expansion and Jordan-Wigner Transformation

- Number of terms in \hat{H} grows as the fourth power of the basis size
- Each term involves a controlled action on at most four qubits at a time
- Absolute bound of less than 400 gates required per term

Time Evolution

Molecular Hamiltonian

$$
\hat{H}=\sum_{X} \hat{h}_{X}=\sum_{p, q}\langle p| \hat{T}+\hat{V}_{N}|q\rangle \hat{a}_{p}^{\dagger} \hat{a}_{q}-\frac{1}{2} \sum_{p, q, r, s}\langle p|\langle q| \hat{V}_{e}|r\rangle|s\rangle \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}
$$

Trotter Expansion and Jordan-Wigner Transformation

$e^{-i \hat{H} t} \approx\left[\prod_{x} e^{-i \hat{h}_{x} t / M}\right]^{M}$

$$
\hat{a}_{p}^{\dagger} \hat{a}_{q} \rightarrow \hat{X}^{p} \hat{X}^{q}\left[\prod_{i=p+1}^{q-1} \hat{\sigma}_{z}^{i}\right] \hat{P}_{0}^{p} \hat{P}_{1}^{q}
$$

- Number of terms in \hat{H} grows as the fourth power of the basis size
- Each term involves a controlled action on at most four qubits at a time
- Absolute bound of less than 400 gates required per term

Precision Considerations

Qubit Requirements

Need at least b bits in readout register for b bits of precision

Chemical Accuracy Requirements

For 6 decimal digits of precision at least 20 logical control qubits are needed.

Improvement: Recursive Implementation
 - Allows readout register size to be independent of precision
 - Fewer consecutive coherent gates

Precision Considerations

Qubit Requirements

Need at least b bits in readout register for b bits of precision

Chemical Accuracy Requirements

For 6 decimal digits of precision at least 20 logical control qubits are needed.

Improvement: Recursive Implementation

- Allows readout register size to be independent of precision
- Fewer consecutive coherent gates

Phase Estimation: A Recursive Algorithm

Get a lower bound and measure the difference . . . repeatedly ... as much as you want.

Qubit Requirements

Qubit Requirements

Water molecule

water	Basis set (number of functions)		
	STO-3G (7)	$6-31 G^{*}(19)$	cc-pVTZ (58)
Mapping	8	25	42
compact (singlets) compact direct	10	29	47
	14	38	116

One of the best classical results
 Exact solution of the electronic Schrödinger equation for water, within a double-polarization (TZ) basis set G. Chan et al, J. Chem. Phys. 1188551 (2003)

Qubit Requirements

Water molecule

| water | Basis set (number of functions) | | |
| :--- | :--- | ---: | ---: | ---: |
| STO-3G (7) $6-31 G^{*}(19)$ cc-pVTZ (58)
 Mapping 8 25 42
 compact (singlets)
 compact
 direct 10 29 47
 14 38 | | 116 | |

One of the best classical results:

Exact solution of the electronic Schrödinger equation for water, within a double-polarization (TZ) basis set
G. Chan et al, J. Chem. Phys. 1188551 (2003)

Recursive Algorithm Results

$\mathrm{H}_{2} \mathrm{O}, 196$ determinants / LiH, ≈ 1200 determinants

Electronic Energy
$\mathrm{H}_{2} \mathrm{O}$, STO-3G
-84.293663 vs.
-84.293665

LiH, 6-31G
-9.1228936 vs.
-9.1228934

Can we do an experiment?

Proposed experimental H_{2} emulation

Circuit for an actual calculation (1929 vintage)

The gate sequence for simulation of the H_{2} molecule in a minimal basis requires 5 quantum bits and under 40 elementary gates.

Can we do an experiment?

Proposed experimental H_{2} emulation

Circuit for an actual calculation (1929 vintage)

The gate sequence for simulation of the H_{2} molecule in a minimal basis requires 5 quantum bits and under 40 elementary gates. Within reach of NMR quantum computers!

Thank you!

Group

Sule Atahan Ivan Tubert-Brohman Ali Najmaie Masoud Mohseni
Ivan Kassal Alejandro Perdomo
Leslie Vogt James Whitfield

Carlos Amador-Bedolla Laura Dominguez

Michael Wan

Collaborators

Colin Truncik (D-Wave)
Anthony Dutoi (Northwestern)
Martin Head-Gordon (Berkeley)
Peter Love (Haveford)
Sabre Kais (Purdue)
Hefeng Wang (Purdue)

The Basics

Electronic Structure Problem

Neglect T_{Z}, treat $V_{z z}$ classically

$$
\hat{H}^{\text {elec }}=-\frac{1}{2} \sum_{i=1}^{N} \vec{\nabla}_{i}^{2}-\sum_{i, L} \frac{Z_{L}}{r_{i L}}+\sum_{i>j}^{N} \frac{1}{r_{i j}}
$$

Find the energy as a function of the Nuclear Coordinates

Solve:

Ab Initio: only inputs are $\left\{Z_{i}\right\}, N$

Output is E

The Basics

Electronic Structure Problem

Neglect T_{Z}, treat $V_{Z Z}$ classically

$$
\hat{H}^{\mathrm{elec}}=-\frac{1}{2} \sum_{i=1}^{N} \vec{\nabla}_{i}^{2}-\sum_{i, L} \frac{Z_{L}}{r_{i L}}+\sum_{i>j}^{N} \frac{1}{r_{i j}}
$$

Find the energy as a function of the Nuclear Coordinates

Solve:

$$
E|\Psi\rangle=\hat{H}^{e l e c}|\Psi\rangle
$$

Ab Initio: only inputs are $\left\{Z_{i}\right\}, N$
Output is E

The Basics

So what?

Nuclei move on the electronic potential energy surfaces surface (PES) Knowledge of PES enables:

- Minima (equilibrum structures)
- Saddle points (Transition states)
- Reaction rates and mechanisms
- PES characterize most of physical chemistry

Traditional Mexican ceramics

The tree of life

The tree of life

Methods for the solution of Schrödinger's equation

Figure by Jim Anderson

The tree of life

Basis Set Methods

Slater Determinants

(1) Approximate multi-electron w.f. using Hydrogenic orbitals
(2) Consider Hartree-Product w.f.: $\left|\chi_{O}^{1}(1)\right\rangle \otimes\left|\chi_{O}^{3}(2)\right\rangle \otimes\left|\chi_{O}^{4}(3)\right\rangle$
(3) Neglects interactions - also ignores indistinguishability
(9) Use a Slater Determinant: complete antisymmetrization of Hartree Products

Slater Determinants

(1) Approximate multi-electron w.f. using Hydrogenic orbitals
(2) Consider Hartree-Product w.f.: $\left|\chi_{0}^{1}(1)\right\rangle \otimes\left|\chi_{0}^{3}(2)\right\rangle \otimes\left|\chi_{0}^{4}(3)\right\rangle$
(3) Neglects interactions - also ignores indistinguishability
(9) Use a Slater Determinant: complete antisymmetrization of Hartree Products

Slater Determinants

(1) Approximate multi-electron w.f. using Hydrogenic orbitals
(2) Consider Hartree-Product w.f.: $\left|\chi_{O}^{1}(1)\right\rangle \otimes\left|\chi_{O}^{3}(2)\right\rangle \otimes\left|\chi_{O}^{4}(3)\right\rangle$
(3) Neglects interactions - also ignores indistinguishability
(9) Use a Slater Determinant: complete antisymmetrization of Hartree Products

Slater Determinants

(1) Approximate multi-electron w.f. using Hydrogenic orbitals
(2) Consider Hartree-Product w.f.: $\left|\chi_{O}^{1}(1)\right\rangle \otimes\left|\chi_{O}^{3}(2)\right\rangle \otimes\left|\chi_{O}^{4}(3)\right\rangle$
(3) Neglects interactions - also ignores indistinguishability

- Use a Slater Determinant: complete antisymmetrization of Hartree Products

Slater Determinants

(1) Approximate multi-electron w.f. using Hydrogenic orbitals
(3) Consider Hartree-Product w.f.: $\left|\chi_{O}^{1}(1)\right\rangle \otimes\left|\chi_{O}^{3}(2)\right\rangle \otimes\left|\chi_{O}^{4}(3)\right\rangle$
(3) Neglects interactions - also ignores indistinguishability
(1) Use a Slater Determinant: complete antisymmetrization of Hartree Products

$$
\left|\chi_{0}^{1} \chi_{O}^{3} \chi_{0}^{4}\right\rangle=\frac{1}{\sqrt{3!}} \sum_{P \in \mathcal{S}_{3}}(-1)^{\operatorname{sign}(P)} P\left[\left|\chi_{O}^{1}(1)\right\rangle \otimes\left|\chi_{O}^{3}(2)\right\rangle \otimes\left|\chi_{O}^{4}(3)\right\rangle\right]
$$

Hartree-Fock

Molecular orbitals

First approximation - neglect e-e interactions Hartree- Fock - treat e-e electrons at mean field level

- Given a set of orbitals compute average potential felt by each electron
- Re-solve the non-interacting problem with this effective potential
- Iterate until convergence
- Result is a set of molecular orbitals

HF Determinants

HF Determinants

(1) HF GS: fill first N orbitals and form Slater Determinant
(2) There are $\binom{2 K}{N}$
occupancy states
(configurations)
(3) These are organized into singles, doubles, triples, etc
(4) The determinants
formed from these
configurations form an N -electron basis

HF Determinants

(1) HF GS: fill first N orbitals and form Slater Determinant
(2) There are $\binom{2 K}{N}$ occupancy states (configurations)
(8) These are organized into singles, doubles, triples, etc
(4) The determinants formed from these configurations form an N -electron basis

HF Determinants

(1) HF GS: fill first N orbitals and form Slater Determinant
(2) There are $\binom{2 K}{N}$ occupancy states (configurations)
(3) These are organized into singles, doubles, triples, etc
(4) The determinants
formed from these
configurations form an N-electron basis

HF Determinants

Hartree Fock Ground stat	Hartree Fock Excited state		HF GS: fill first N orbitals and form Slater Determinant
-	$\underbrace{\ldots-\substack{\text { 2K-N virtual } \\ \text { orbitals }}}_{\square}$		There are $\binom{2 K}{N}$ occupancy states (configurations)
$\begin{aligned} & x_{\mathrm{N}}-\mathrm{O}- \\ & -\mathrm{O}- \\ & x_{4}-\mathrm{O}- \end{aligned}$	$\underbrace{x^{-}-}_{x_{4}-\mathrm{O-}}$	(3)	These are organized into singles, doubles, triples, etc
$\begin{aligned} & x_{3} \ldots-0- \\ & x_{2}-0- \\ & x_{1}=0- \end{aligned}$	$\begin{aligned} & x_{3} \ldots-0- \\ & x_{2}-0- \\ & x_{1}=0- \end{aligned}$	(4)	The determinants formed from these configurations form an N -electron basis

Somma's mapping

And how can we use it for quantum simulation?
Definition: Spin configurations: $[z] \equiv\left|z_{1} z_{2} z_{3} z_{4}\right\rangle$
Thermodynamic variables A at T

$$
\langle A\rangle_{T}=\frac{1}{\mathcal{Z}(T)} \sum_{[z]} e^{-\beta E[z]} A_{[z]}
$$

Example: Ising model $E[z]=J_{i j} z^{i} z^{j}$

Classical \rightarrow quantum mapping

$$
[z] \rightarrow|[z]\rangle
$$

Somma's mapping

And how can we use it for quantum simulation?
Definition: Spin configurations: $[z] \equiv\left|z_{1} z_{2} z_{3} z_{4}\right\rangle$
Thermodynamic variables A at T

$$
\langle A\rangle_{T}=\frac{1}{\mathcal{Z}(T)} \sum_{[z]} e^{-\beta E[z]} A_{[z]}
$$

Example: Ising model $E[z]=J_{i j} z^{i} z^{j}$

Classical \rightarrow quantum mapping

$$
\begin{aligned}
{[z] } & \rightarrow|[z]\rangle \\
z^{i} & \rightarrow \sigma_{z}^{i} \\
A & \rightarrow \hat{A}
\end{aligned}
$$

Some goodies

Quantum "Thermodynamic" averages

$$
\langle\hat{\boldsymbol{A}}\rangle=\operatorname{Tr}[\rho \hat{A}]=\frac{\langle\psi(T)| \hat{\boldsymbol{A}}|\psi(T)\rangle}{\langle\psi(T) \mid \psi(T)\rangle} \equiv\langle\boldsymbol{A}\rangle_{T}
$$

But, does the Hamiltonian $[A, H]=0$ that gives the thermodynamic states exist?

It exictol See-Henley J. of Phys. Cond. Mat 16 (2004) S891

For any classical statistical-mechanics model with a discrete state space, and endowed with a dynamics satisfying detailed balance (...) a quantum Hamiltonian can be constructed (on the same state space) such that the ground state wavefunction coincides with the classical equilibrium distribution. Furthermore the excited eigenstates correspond to classical relaxation modes (...) Quantum and classical correlation functions are related by analytic continuation to the imaginary time axis.

Some goodies

Quantum "Thermodynamic" averages

$$
\langle\hat{A}\rangle=\operatorname{Tr}[\rho \hat{A}]=\frac{\langle\psi(T)| \hat{A}|\psi(T)\rangle}{\langle\psi(T) \mid \psi(T)\rangle} \equiv\langle A\rangle_{T}
$$

But, does the Hamiltonian $[A, H]=0$ that gives the thermodynamic states exist?

It exists! See Henley J. of Phys. Cond. Mat 16 (2004) S891

For any classical statistical-mechanics model with a discrete state space, and endowed with a dynamics satisfying detailed balance (...) a quantum Hamiltonian can be constructed (on the same state space) such that the ground state wavefunction coincides with the classical equilibrium distribution. Furthermore the excited eigenstates correspond to classical relaxation modes (...) Quantum and classical correlation functions are related by analytic continuation to the imaginary time axis.

How to get the magic $C \rightarrow Q$ Hamiltonian?

Classical master equation

$$
\frac{d p_{i}}{d \tau}=\sum_{j \neq i}\left(W_{i j} p_{j}(\tau)-W_{j i} p_{i}(\tau)\right)
$$

with $W_{i i}=-\sum_{j \neq i} W_{j i}$

Similarity-transformed transition matrix

$$
\hat{W}(T)=e^{-\beta H / 2} W(T) e^{\beta H / 2}
$$

- Shares eigenvalues with $W(T)$

Here it is!

$$
H_{q}(T)=I-\hat{W}(T)
$$

With this Hamiltonian_one can show that for $T>0 .|\Psi(T)\rangle$ is the

Properties and examples

Important results of these papers

- Thermodynamics of classical spin $1 / 2$ can be obtained from the ground state of a quantum system with classical interactions (determined by T and H) and an external homogeneous transverse field.
- Quantum fluctuations \Longleftrightarrow Classical fluctuations
- $\Psi(T \rightarrow \infty)\rangle \approx \frac{1}{2^{n / 2}}|[z]\rangle>$

1D Ising model

Frustrated Hamiltonian, except for $T=0$.

Properties and examples

Important results of these papers

- Thermodynamics of classical spin $1 / 2$ can be obtained from the ground state of a quantum system with classical interactions (determined by T and H) and an external homogeneous transverse field.
- Quantum fluctuations \Longleftrightarrow Classical fluctuations
- $\Psi(T \rightarrow \infty)\rangle \approx \frac{1}{2^{n / 2}}|[z]\rangle>$

1D Ising model

$$
H_{q}^{j}(T)=\sigma_{x}^{j}-\cosh (\beta J)-\cosh (\beta J) \sinh (\beta J)\left(\sigma_{z}^{j-1} \sigma_{z}^{j}+\sigma_{z}^{j} \sigma_{z}^{j+1}\right)-\sinh (\beta J)^{2} \sigma_{z}^{(j-1)} \sigma_{z}^{(j+1)}
$$

Frustrated Hamiltonian, except for $T=0$.

Why do chemists care?

Plan of attack

- An adiabatic QC like the one described above could yield quantum states that are analogous to thermodynamic states.
- One can obtain statistics for lattice models of interest to chemists at finite temperature

> Specific example of interest to us: Protein lattice models
> - We have found a mapping of the Hydrophobic-Polar model to a 2DIMM
> - Working with D-Wave for experimental realization
> - We plan to use Somma's method to study $T>0$ states of this model experimentally using their quantum device.

Why do chemists care?

Plan of attack

- An adiabatic QC like the one described above could yield quantum states that are analogous to thermodynamic states.
- One can obtain statistics for lattice models of interest to chemists at finite temperature

Specific example of interest to us: Protein lattice models

- We have found a mapping of the Hydrophobic-Polar model to a 2DIMM
- Working with D-Wave for experimental realization
- We plan to use Somma's method to study $T>0$ states of this model experimentally using their quantum device.

HP model

Ivan Tubert-Brohman and Colin Truncik (D-Wave) and AAG

HP model mapping to 52 quantum bits

Ivan Tubert-Brohman and Colin Truncik (D-Wave) and AAG

Interview with David Deutsch, Wired Magazine

David Deutsch

I think the field doesn't need acceptability. The idea will either be valid, or not. The claim will either be true, or not. I think that the normal processes of scientific criticism, peer review and just general discussion in the scientific community is going to test this idea provided enough information is given of what this idea is. That will be quite independent of what kind of access they provide to the public. However, I think the idea of providing an interface such as you describe is a very good one. I think it's a wonderful idea....

TeQuiLA: A High-Performance QC Simulator

Excited states: Multiconfigurational Self-Consistent Field (MCSCF)

Work in progress: In collaboration with Sabre Kais, Purdue University

MCSCF in a nutshell

- Choose a subspace $\mathcal{H}_{\text {MCSCF }} \subset \mathcal{H}$
- Find the optimal coefficents $C_{\mu i}$ and orbitals ϕ_{i} self-consistently
- Note: The orbitals will be different to the Cl orbitals (natural orbitals)

MCSCF Equations

$$
\psi_{M C S C F}=\sum_{K} A_{K} \Phi_{K}, \quad \Phi_{K}=A \prod_{i \subset K} \phi_{i}, \quad \phi_{i}=\sum_{\mu} \chi_{\mu} C_{\mu i}
$$

MCSCF advantages

- $\left|\left\langle\Psi_{\text {MCSCF }} \mid \Psi_{0}\right\rangle\right|^{2}>\left|\left\langle\Psi_{H F} \mid \Psi_{0}\right\rangle\right|^{2}$
- Can be prepared classically in polynomial time
- Reproduces better potential energy surfaces and excited states.
- We conjecture that it has a significative overlap with a polynomial number of states.

State Preparation

- Use Natural orbital occupation coefficients as a guess, or
(2) Prepare the MCSCF state efficiently

Valence active space

Capturing the important correlations

- Use near-optimal orbitals (e.g. coming out from imperfect pairing method)
- Only consider excitations of the valence electrons
- Able to treat more exciting chemical problems

Other things we will work on next semster

 When the students join the group!
Phase estimation

- Effect of Trotter discretization
- Finish work on effects of noise
- Excited states
- Molecular properties (polarizability, dipole moments)
- Precise gate counts and sequences for series of molecules

Other quantum algorithms

- Finding protein low-energy conformations (Ivan Tubert-Brohman)
- Chemical reaction dynamics (Masoud Mohseni)
- Density Functional theory and correlation (Ali Najmaie)

Conclusions and Outlook
 "We want to use this machine in the same sense ... as a cyclotron is used in a physics laboratory" - John Von Neumann

- Quantum chemistry includes a well-defined set of problems which are optimal candidates for small quantum computers.
- Much chemical intuition available: should enable proof of conjectures about, e.g. adiabatic state preparation
- Experimental realizations - yes, please
- Use Tequila to design further small realizable examples
- Further algorithmic improvements, other eigenfunction Ansatzes, active space methods, lattice gas methods, ...

Thank you!

Anthony Dutoi, Peter Love, Martin Head-Gordon

Kinga Partyka, James Whitfield

Also thanks to:

- Mikko Möttönen (Factorization)
- The David Cory group (Jonathan Hodges, Troy Borneman)
- The Martin Head-Gordon group
- D-Wave Systems (funding)

Reference:
Aspuru-Guzik, Dutoi, Love and Head-Gordon Science 3095741 (2005)

But where are we?

Active control of qubits

Steffen et al. Science 313 (2006) 1423

But where are we?

Active control of qubits

Steffen et al. 313 (2006) 1423

Adiabatic State Preparation

If HF is a bad guess, construct the FCI solution adiabatically.

Open question

Discretization effects?

Adiabatic State Preparation

If HF is a bad guess, construct the FCI solution adiabatically.

Open question

Discretization effects?

Adiabatic State Preparation for Molecules?

Arguments

- Molecules are insulators and they often have color (even most polymers).
- For a given system, we know a lot of properties of the eigenvalue spectrum from approximate classical methods.
- Kohn's argument against wave function theories does not lead to an exponential increase in preparation time.

Adiabatic State Preparation for Molecules?

Arguments

- Molecules are insulators and they often have color (even most polymers).
- For a given system, we know a lot of properties of the eigenvalue spectrum from approximate classical methods.
- Kohn's argument against wave function theories does not lead to an exponential increase in preparation time.

Kohn's Idea

For an group of K non-interacting subsystems call $S_{1}=\left|\left\langle\Psi_{0}^{1} \mid \Psi_{T}^{1}\right\rangle\right|$, then the overall overlap S will decrease as S_{1}^{K},

Adiabatic State Preparation for Molecules?

Arguments

- Molecules are insulators and they often have color (even most polymers).
- For a given system, we know a lot of properties of the eigenvalue spectrum from approximate classical methods.
- Kohn's argument against wave function theories does not lead to an exponential increase in preparation time.

Kohn's Idea

For an group of K non-interacting subsystems call $S_{1}=\left|\left\langle\Psi_{0}^{1} \mid \Psi_{T}^{1}\right\rangle\right|$, then the overall overlap S will decrease as S_{1}^{K}, but ...

$$
\lim _{K \rightarrow \infty}\left[1-S_{1}\right]=\frac{\ln S}{K}
$$

The Aspuru-Guzik Group

Department of Chemistry, Harvard University

Renewable Energy Materials

- Polymer Fuel Cell Membranes
- Nanoparticle/Organic photovoltaic materials

Density Functional Theory development
 - Non-local density functional theory
 - Connections with quantum information theory

Quantum simulation

- Quantum devices (computers and simulators) and their application to chemistry.
- Connections between quantum algorithms and physical systems.

The Aspuru-Guzik Group

Department of Chemistry, Harvard University

Renewable Energy Materials

- Polymer Fuel Cell Membranes
- Nanoparticle/Organic photovoltaic materials

Density Functional Theory development

- Non-local density functional theory
- Connections with quantum information theory

Quantum simulation
 - Quantum devices (computers and simulators) and their application to chemistry.
 - Connections between quantum algorithms and physical systems.

The Aspuru-Guzik Group

Department of Chemistry, Harvard University

Renewable Energy Materials

- Polymer Fuel Cell Membranes
- Nanoparticle/Organic photovoltaic materials

Density Functional Theory development

- Non-local density functional theory
- Connections with quantum information theory

Quantum simulation

- Quantum devices (computers and simulators) and their application to chemistry.
- Connections between quantum algorithms and physical systems.

