Where is the electron pair?

A QMC detective story

Carlos Amador-Bedolla¹, Romelia Salomón-Ferrer², William A. Lester, Jr.², Alan Aspuru-Guzik ¹

¹Department of Chemistry and Chemical Biology Harvard University

> ²Department of Chemistry University of California, Berkeley

The Towler Institute Vallico Soto, Italy July 26, 2007

Talk overview

What we will cover for sure and maybe cover...

Electrophilic amination: A QMC study

- The chemistry
- Electron-pair localization functions (original and modified)
- Sketch current and future work

Recently published: Amador et al., J. Chem. Phys. 126, 204308 (2007)

Electronic structure by quantum computation

- Polynomial algorithm for the exact solution of the Schrödinger equation on a quantum computer
- Recent results

Talk overview

What we will cover for sure and maybe cover...

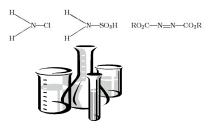
Electrophilic amination: A QMC study

- The chemistry
- Electron-pair localization functions (original and modified)
- Sketch current and future work

Recently published: Amador et al., J. Chem. Phys. 126, 204308 (2007)

Electronic structure by quantum computation

- Polynomial algorithm for the exact solution of the Schrödinger equation on a quantum computer
- Recent results


Making proteins: Synthesis of peptide bonds

Nucleophilic vs. electrophilic substitution

- \bullet Carbon-nitrogen bonds are usually formed by the nucleophilic attack of a nitrogen to an electrophilic carbon (S_N2)
- Reverse process: a nucleophilic carbon replaces a leaving group previously attached to an electrophilic nitrogen

$$X \longrightarrow C + HNRR' \longrightarrow C \longrightarrow NRR' \longleftarrow RR'N-X + C$$

Some reagents have been found and tested

Exploration using QMC

The mission

- Is it possible to rationalize the electronic properties of the already known reagents so as to be able to direct the search for even more effective ones?
- Approach the answer by:
 - Use DMC to calculate energetics
 - Calculate the electron-pair localization function (EPLF)
 rationalize values, find trends, explain differences, make predictions

Representative molecules

- Typical nucleophilic behavior:
 NH₃, NH₂-CH₃ (MA), NH-(CH₃)₂ (DMA), N-(CH₃)₃ (TMA)
- Possible electrophilic behavior: NH₂F, NH₂CF₃

Exploration using QMC

The mission

- Is it possible to rationalize the electronic properties of the already known reagents so as to be able to direct the search for even more effective ones?
- Approach the answer by:
 - Use DMC to calculate energetics
 - Calculate the electron-pair localization function (EPLF)
 rationalize values, find trends, explain differences, make predictions

Representative molecules

- Typical nucleophilic behavior:
 NH₃, NH₂-CH₃ (MA), NH-(CH₃)₂ (DMA), N-(CH₃)₃ (TMA)
- Possible electrophilic behavior: NH₂F, NH₂CF₃

4/24

DMC calculations

Calculation parameters

- geometries optimized with GAMESS at MP2//631G* level
- cc-pVTZ basis set
- fourth order SMBH correlation function, absolute deviation minimization
- collection of 10⁶ walkers for EPLF
- ≈ 1 week computational time on 8 cores.
- All calculations carried out with the Zori code (http://www.zori-code.com)

Atomization enthalpy differences

Single-determinant energies

Atomization enthalpy differences $ \Delta E_a^{ m calc} - \Delta E_a^{ m expt} $ (kJ/mol)					
Method		Molecule			
	NH_3	MA	DMA		
HF	394	693	984		

	NH_3	MA	DMA	TMA
	11113		D.W., C	
HF	394	693	984	1278
BLYP	24	1	170	34
B3LYP	21	8	4	2
B3PW91	6	1	2	3
MP2FC	29	58	70	75
MP2FC//HF/6-31G*	32	1121	76	86
MP2FC//B3LYP/6-31G*	32	1124	75	84
MP2FC//MP2FC/6-31G*	32	61	76	84
DMC-SMBH//MP2/6-31G*	3	9	14	91

Numbers are differences with the experimental value at 298.15 K.

Total energies are corrected by zero point energy (ZPE).

Electron Pair Localization Function

$$d_{\sigma\sigma}(\overrightarrow{r}) = \sum_{i=1}^{N} \langle \langle \delta(\overrightarrow{r} - \overrightarrow{r}_i) \min_{j:\sigma_j = \sigma_i} | \overrightarrow{r} - \overrightarrow{r}_j | \rangle \rangle,$$

$$d_{\sigma\bar{\sigma}}(\overrightarrow{r}) = \sum_{i=1}^{N} \langle \langle \delta(\overrightarrow{r} - \overrightarrow{r}_{i}) \min_{j:\sigma_{j} \neq \sigma_{i}} | \overrightarrow{r} - \overrightarrow{r}_{j} | \rangle \rangle.$$

EPLF

In terms of these average distances, the EPLF is defined as

$$EPLF(\overrightarrow{r}) = \frac{d_{\sigma\sigma}(\overrightarrow{r}) - d_{\sigma\bar{\sigma}}(\overrightarrow{r})}{d_{\sigma\sigma}(\overrightarrow{r}) + d_{\sigma\bar{\sigma}}(\overrightarrow{r})}.$$

EPLF range

(-1) unpaired (0) long-distance (1) Paired

A. Scemama, P. Chaquin, M. Caffarel. J. Chem. Phys., 121:1725-1735, 2004

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺

Electron Pair Localization Function

$$d_{\sigma\sigma}(\overrightarrow{r}) = \sum_{i=1}^{N} \langle \langle \delta(\overrightarrow{r} - \overrightarrow{r}_i) \min_{j:\sigma_j = \sigma_i} | \overrightarrow{r} - \overrightarrow{r}_j | \rangle \rangle,$$

$$d_{\sigma\bar{\sigma}}(\overrightarrow{r}) = \sum_{i=1}^{N} \langle \langle \delta(\overrightarrow{r} - \overrightarrow{r}_{i}) \min_{j; \sigma_{j} \neq \sigma_{i}} | \overrightarrow{r} - \overrightarrow{r}_{j} | \rangle \rangle.$$

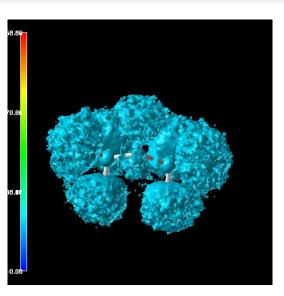
EPLF

In terms of these average distances, the EPLF is defined as

$$EPLF(\overrightarrow{r}) = \frac{d_{\sigma\sigma}(\overrightarrow{r}) - d_{\sigma\bar{\sigma}}(\overrightarrow{r})}{d_{\sigma\sigma}(\overrightarrow{r}) + d_{\sigma\bar{\sigma}}(\overrightarrow{r})}.$$

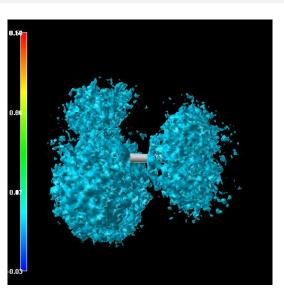
EPLF range

(-1) unpaired (0) long-distance (1) Paired


A. Scemama, P. Chaquin, M. Caffarel. J. Chem. Phys., 121:1725-1735, 2004.

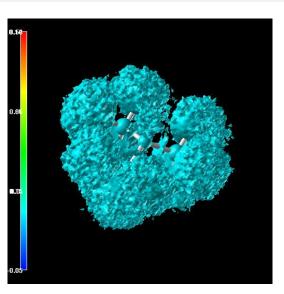
Dimethylamine

A nucleophilic amine


iso-EPLF surface for dimethylamine

Fluoroamine

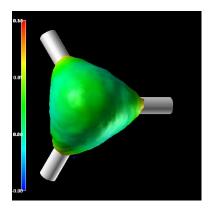
An electrophilic amine



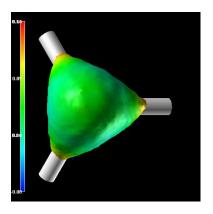
iso-EPLF surface for fluoroamine

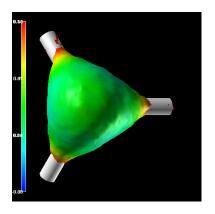
Trimethylamine

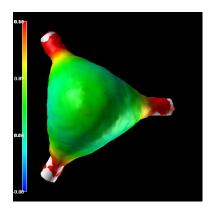
A nucleophilic amine



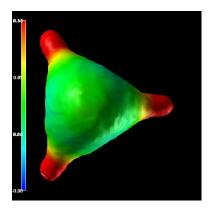
iso-EPLF surface for tri-methylamine


EPLF projected on the electron density

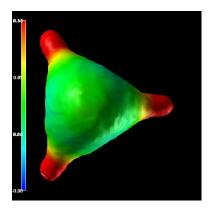

EPLF projected on the electron density

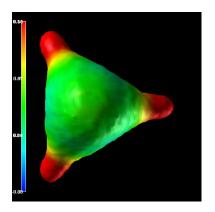

EPLF projected on the electron density

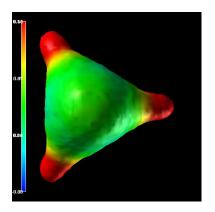
EPLF projected on the electron density

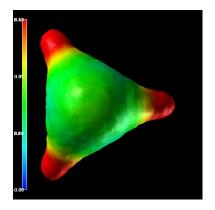

iso-density surface with projected color coded EPLF for ammonia

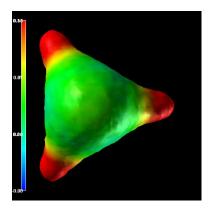
11/24

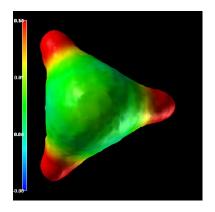

EPLF projected on the electron density

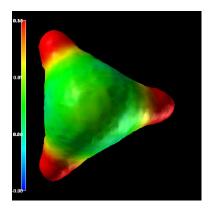

EPLF projected on the electron density

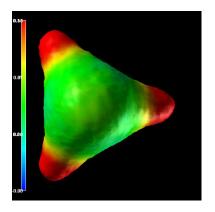

EPLF projected on the electron density

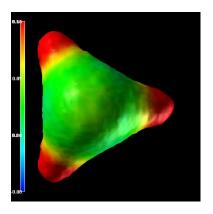

EPLF projected on the electron density

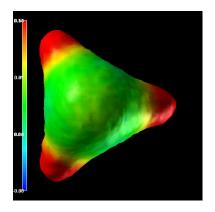

EPLF projected on the electron density

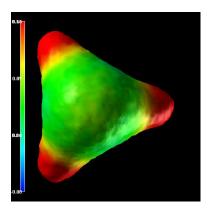

EPLF projected on the electron density

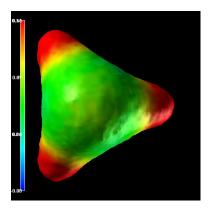

EPLF projected on the electron density

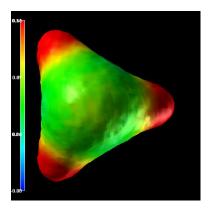

EPLF projected on the electron density

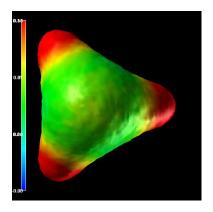

EPLF projected on the electron density

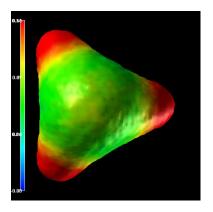

EPLF projected on the electron density

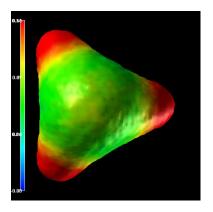

EPLF projected on the electron density

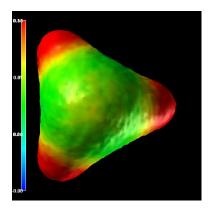

EPLF projected on the electron density

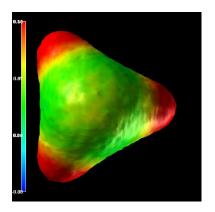

EPLF projected on the electron density

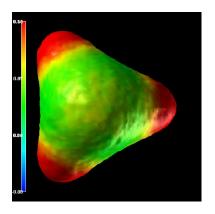

EPLF projected on the electron density

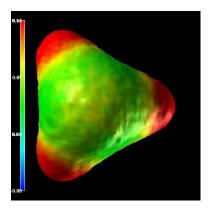

EPLF projected on the electron density

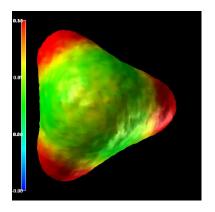

EPLF projected on the electron density

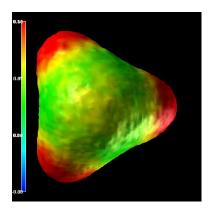

EPLF projected on the electron density

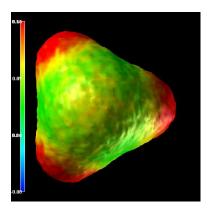

EPLF projected on the electron density

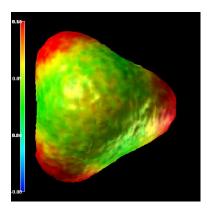

EPLF projected on the electron density

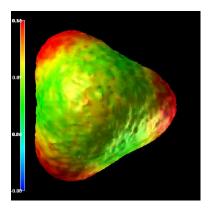

EPLF projected on the electron density

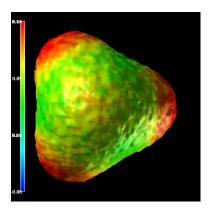

EPLF projected on the electron density

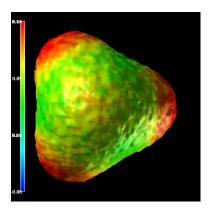

EPLF projected on the electron density

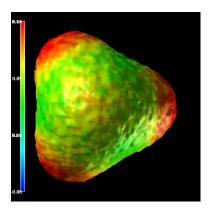

EPLF projected on the electron density

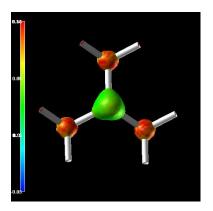

EPLF projected on the electron density

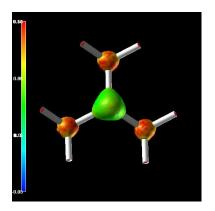

EPLF projected on the electron density

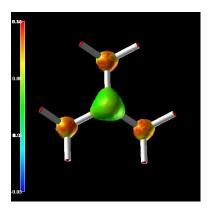

EPLF projected on the electron density


EPLF projected on the electron density

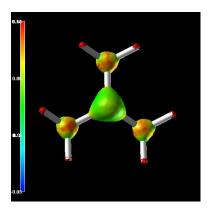

EPLF projected on the electron density

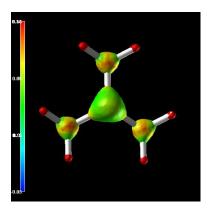

EPLF projected on the electron density

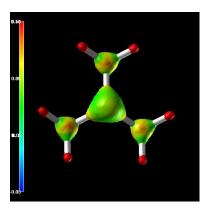

EPLF projected on the electron density

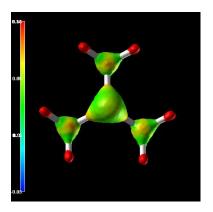

EPLF projected on the electron density

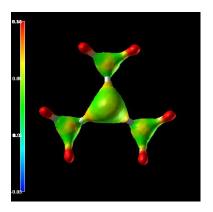
EPLF projected on the electron density

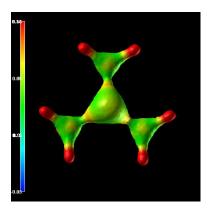

EPLF projected on the electron density

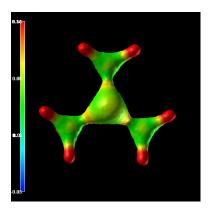

EPLF projected on the electron density

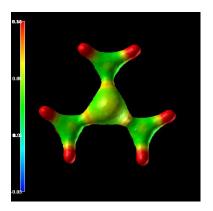

EPLF projected on the electron density

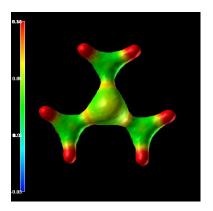

EPLF projected on the electron density

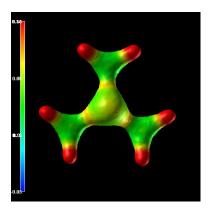

EPLF projected on the electron density

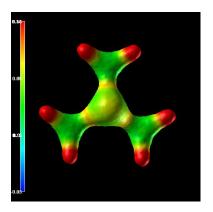

EPLF projected on the electron density

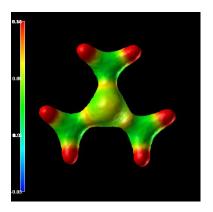

EPLF projected on the electron density

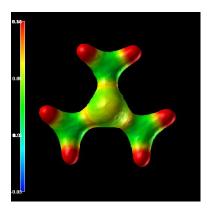

EPLF projected on the electron density

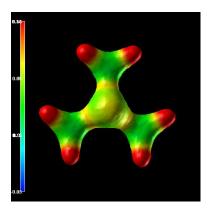

EPLF projected on the electron density

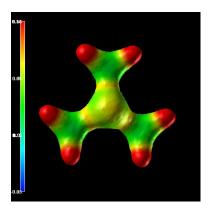

EPLF projected on the electron density

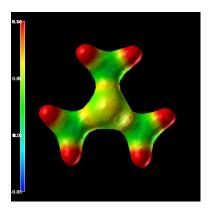

EPLF projected on the electron density


EPLF projected on the electron density

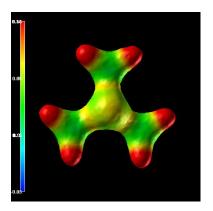

EPLF projected on the electron density


EPLF projected on the electron density

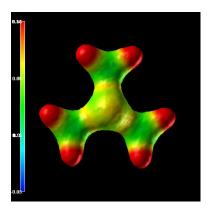

EPLF projected on the electron density

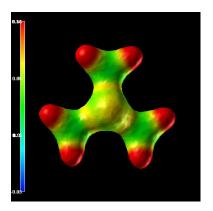

EPLF projected on the electron density

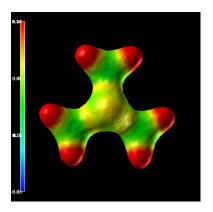
EPLF projected on the electron density

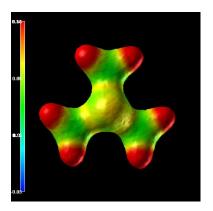

iso-density surface with projected color coded EPLF for trimethyl amine

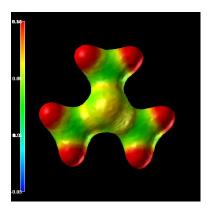
12 / 24

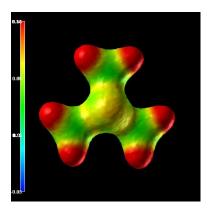

EPLF projected on the electron density

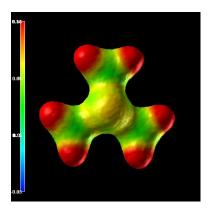

EPLF projected on the electron density


EPLF projected on the electron density

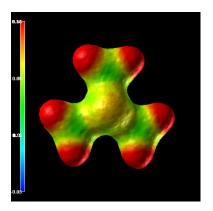

EPLF projected on the electron density

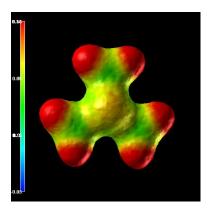

EPLF projected on the electron density

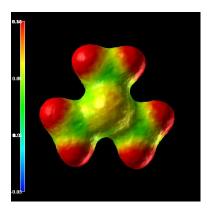

EPLF projected on the electron density

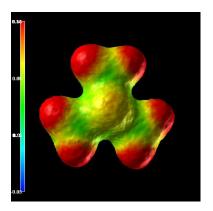

EPLF projected on the electron density

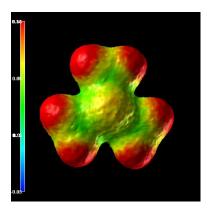
EPLF projected on the electron density

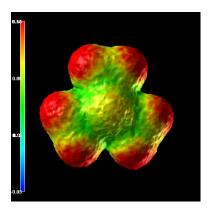

EPLF projected on the electron density

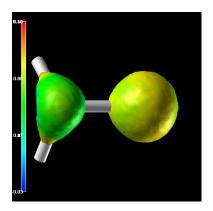

EPLF projected on the electron density

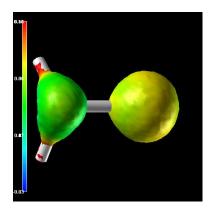

EPLF projected on the electron density

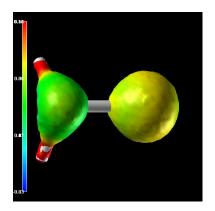

EPLF projected on the electron density

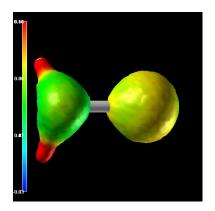

EPLF projected on the electron density

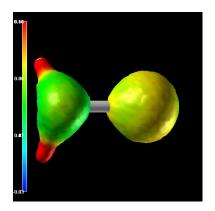

EPLF projected on the electron density

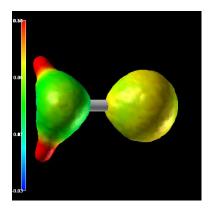

EPLF projected on the electron density

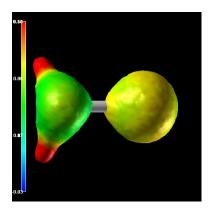

EPLF projected on the electron density

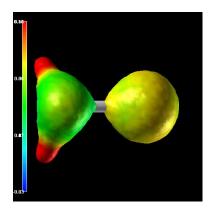

EPLF projected on the electron density

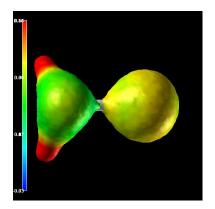

EPLF projected on the electron density

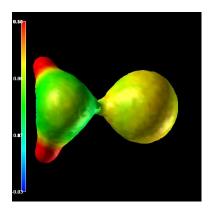

EPLF projected on the electron density

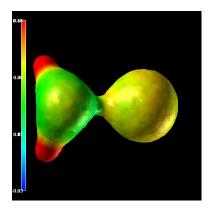

EPLF projected on the electron density

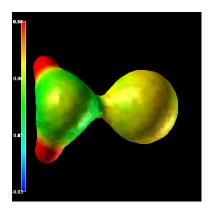

EPLF projected on the electron density

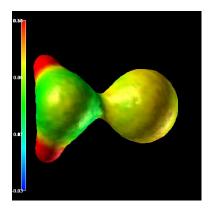

EPLF projected on the electron density

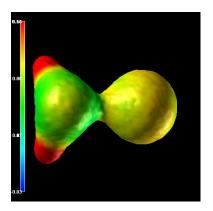

EPLF projected on the electron density

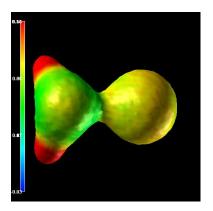

EPLF projected on the electron density

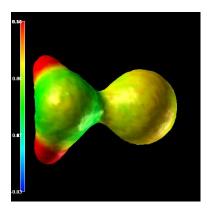

EPLF projected on the electron density

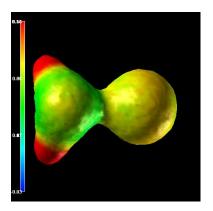

EPLF projected on the electron density

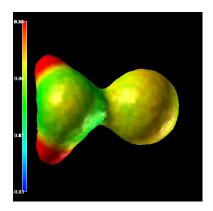

EPLF projected on the electron density

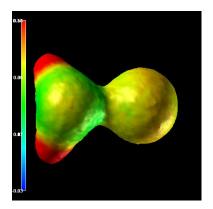

EPLF projected on the electron density

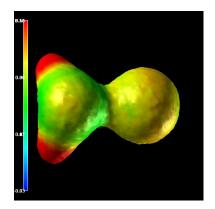

EPLF projected on the electron density

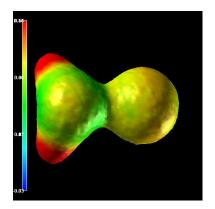

EPLF projected on the electron density

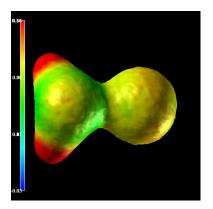

EPLF projected on the electron density

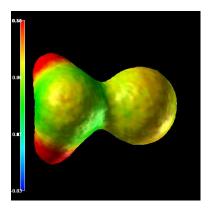

EPLF projected on the electron density

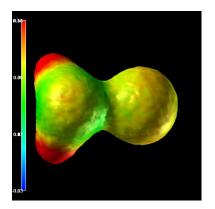

EPLF projected on the electron density

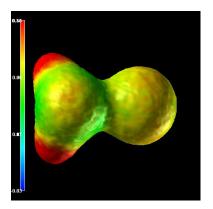

EPLF projected on the electron density

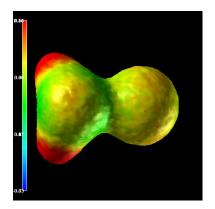

EPLF projected on the electron density

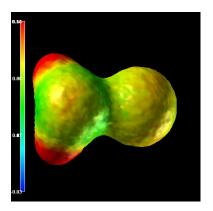

EPLF projected on the electron density

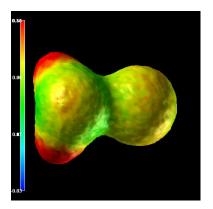

EPLF projected on the electron density

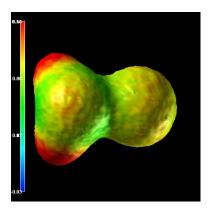

EPLF projected on the electron density

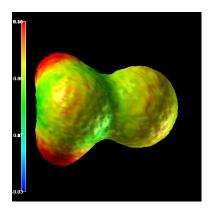

EPLF projected on the electron density


EPLF projected on the electron density

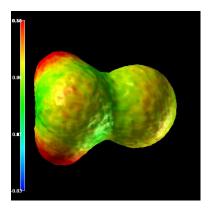

EPLF projected on the electron density


EPLF projected on the electron density

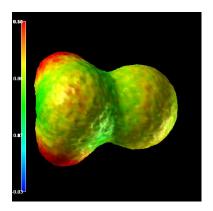

EPLF projected on the electron density

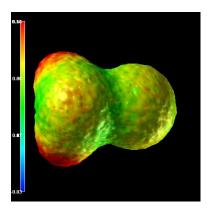

EPLF projected on the electron density

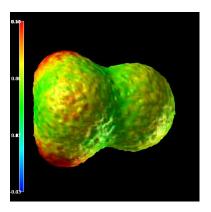
EPLF projected on the electron density

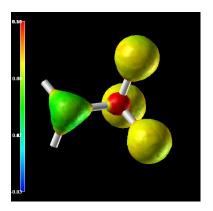

iso-density surface with projected color coded EPLF for fluoroamine

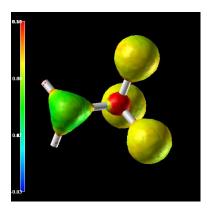
13 / 24

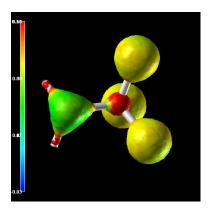

EPLF projected on the electron density

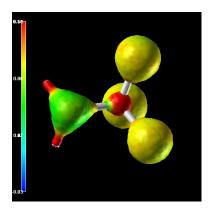

EPLF projected on the electron density

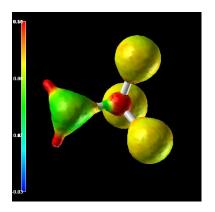

EPLF projected on the electron density

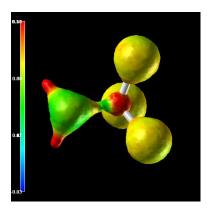

EPLF projected on the electron density

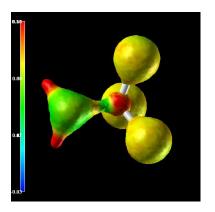

EPLF projected on the electron density

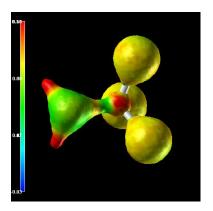

EPLF projected on the electron density

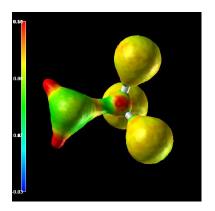

EPLF projected on the electron density

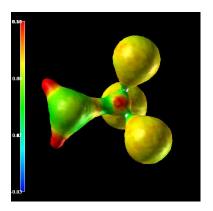

EPLF projected on the electron density

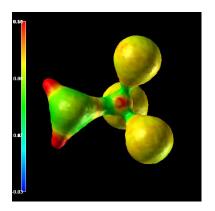

EPLF projected on the electron density

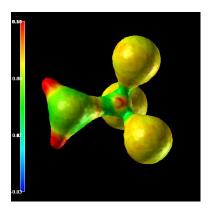

EPLF projected on the electron density

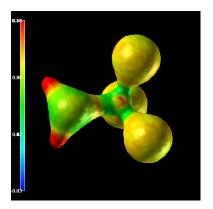

EPLF projected on the electron density

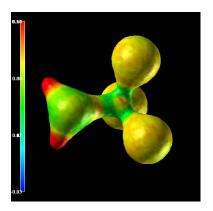

EPLF projected on the electron density

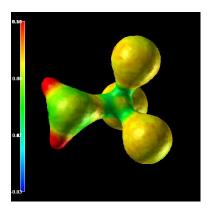

EPLF projected on the electron density

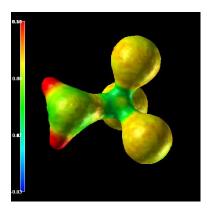

EPLF projected on the electron density

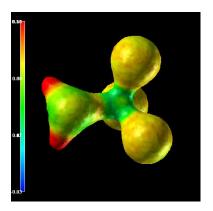

EPLF projected on the electron density

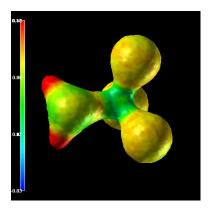

EPLF projected on the electron density

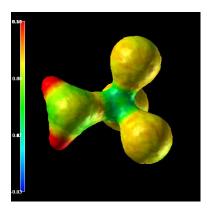

EPLF projected on the electron density

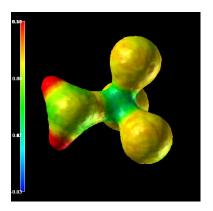

EPLF projected on the electron density

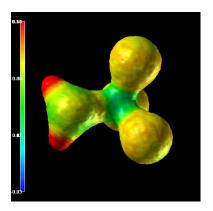

EPLF projected on the electron density


EPLF projected on the electron density

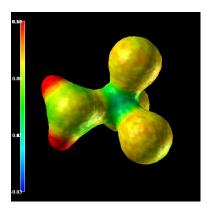

EPLF projected on the electron density

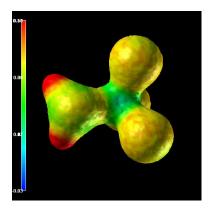

EPLF projected on the electron density

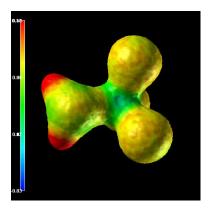

EPLF projected on the electron density

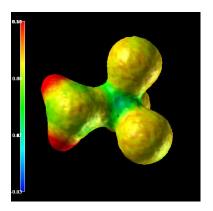

EPLF projected on the electron density

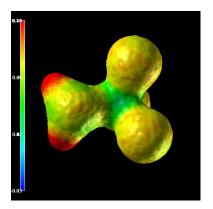

EPLF projected on the electron density

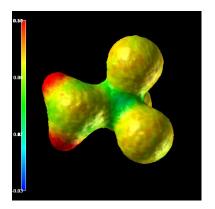

EPLF projected on the electron density

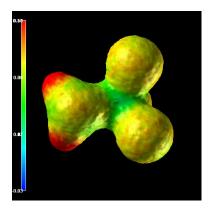

EPLF projected on the electron density

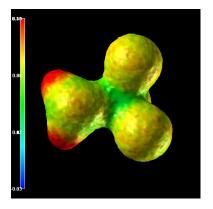

EPLF projected on the electron density

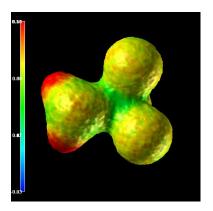

EPLF projected on the electron density

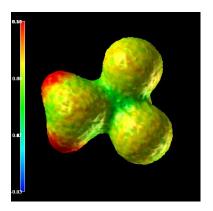

EPLF projected on the electron density

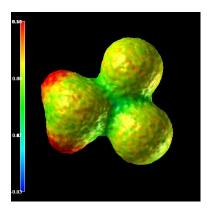

EPLF projected on the electron density

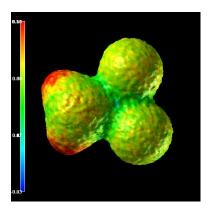

EPLF projected on the electron density

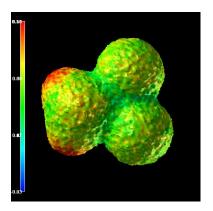

EPLF projected on the electron density


EPLF projected on the electron density


EPLF projected on the electron density


EPLF projected on the electron density

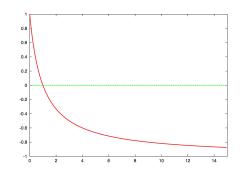

EPLF projected on the electron density


EPLF projected on the electron density

EPLF projected on the electron density

A conclusion

EPLF seems to be a very good hydrogen locator!


Let's go back to definition..

$$EPLF(\overrightarrow{r}) = \frac{d_{\sigma\sigma}(\overrightarrow{r}) - d_{\sigma\bar{\sigma}}(\overrightarrow{r})}{d_{\sigma\sigma}(\overrightarrow{r}) + d_{\sigma\bar{\sigma}}(\overrightarrow{r})}.$$

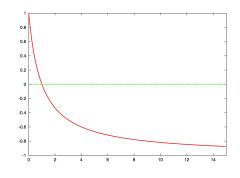
If the $\sigma\sigma$ and $\sigma\bar{\sigma}$ distances are proportional to each other, EPLF is insensitive to the inter-electronic distance

Assume
$$d_{\sigma\bar{\sigma}}(\overrightarrow{r}) = xd_{\sigma\sigma}(\overrightarrow{r})$$

$$EPLF(\overrightarrow{r}) = \frac{1-x}{1+x}$$

A conclusion

EPLF seems to be a very good hydrogen locator!

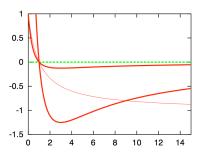

Let's go back to definition...

$$EPLF(\overrightarrow{r}) = \frac{d_{\sigma\sigma}(\overrightarrow{r}) - d_{\sigma\bar{\sigma}}(\overrightarrow{r})}{d_{\sigma\sigma}(\overrightarrow{r}) + d_{\sigma\bar{\sigma}}(\overrightarrow{r})}.$$

If the $\sigma\sigma$ and $\sigma\bar{\sigma}$ distances are proportional to each other, EPLF is insensitive to the inter-electronic distance

Assume
$$d_{\sigma\bar{\sigma}}(\overrightarrow{r}) = xd_{\sigma\sigma}(\overrightarrow{r})$$

$$EPLF(\overrightarrow{r}) = \frac{1-x}{1+x}$$



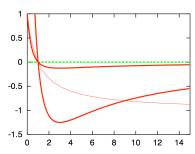
A distance-dependent variant of EPLF

For characterizing an **electro-nucleophilicity** scale, we are interested in measuring how *paired* and *localized* are electrons.

We introduce the EPLFN family of functions. In particular EPLF3, the EPLF density

$$EPLFN(\overrightarrow{r}) = \frac{d_{\sigma\sigma}(\overrightarrow{r}) - d_{\sigma\bar{\sigma}}(\overrightarrow{r})}{\left(d_{\sigma\sigma}(\overrightarrow{r}) + d_{\sigma\bar{\sigma}}(\overrightarrow{r})\right)^{N+1}}$$

But... where is the electron pair region?



A distance-dependent variant of EPLF

For characterizing an **electro-nucleophilicity** scale, we are interested in measuring how *paired* and *localized* are electrons.

We introduce the EPLFN family of functions. In particular EPLF3, the EPLF density

$$EPLFN(\overrightarrow{r}) = \frac{d_{\sigma\sigma}(\overrightarrow{r}) - d_{\sigma\bar{\sigma}}(\overrightarrow{r})}{\left(d_{\sigma\sigma}(\overrightarrow{r}) + d_{\sigma\bar{\sigma}}(\overrightarrow{r})\right)^{N+1}}$$

But... where is the electron pair region?

Electron Localization Function (ELF)

The DFT original formula and inspiration for EPLF and EPLFN

Electron Localization Function (ELF)

Conditional pair probability for same spin —spherical average—,

$$P_{\text{cond}}^{\sigma\sigma}(\mathbf{r},s) = \frac{1}{3} \left[\sum_{j} |\nabla \phi_{j}|^{2} - \frac{1}{4} \frac{|\nabla \rho_{\sigma}|^{2}}{\rho_{\sigma}} \right] s^{2} + \dots$$

(smaller probability, more localization)
Define

$$D_{\sigma}(r) = \sum_{j} |\nabla \phi_{j}|^{2} - \frac{1}{4} \frac{|\nabla \rho_{\sigma}|^{2}}{\rho_{\sigma}};$$

and the corresponding quantity for the uniform electron gas

$$D_{\sigma}^{0}(r) = \frac{3}{5}(6\pi^{2})^{2/3}\rho_{\sigma}^{5/3}.$$

Electron Localization Function

Definition

Thus, ELF is defined as

$$ELF(r) = \frac{1}{1 + \left(D_{\sigma}/D_{\sigma}^{0}\right)^{2}}.$$

Interpretation

- ELF equals one when D_{σ} is zero —highest localization.
- ELF equals one half when the localization corresponds to that of the uniform electron gas.
- ELF is smaller for even smaller localization.

- A. D. Becke and K. E. Edgecombe. J. Chem. Phys. 92:5397-5403, 1990.
- B. Silvi and A. Savin. Nature 371:683-686, 1994.

EPLF in the ELF basin

Effect of electron correlation on the electron pair region density

For our purposes, the most important property of ELF is that defines a well-defined basin around the lone pair, *i. e.* defines the *pair's volume*.

Descriptors of the electron pair basin								
Molecule	Integral		Distance	Volume				
	LDA	QMC						
TMA	2.295	2.382	0.94	354				
DMA	2.251	2.324	0.95	775				
MA	2.215	2.232	0.95	1488				
NH_3	2.167	2.211	0.95	2294				
NH ₂ CF ₃	2.060	2.144	0.97	1656				
NH ₂ F	2.386	2.386	0.86	1852				

Alternative localization ideas

Can break down when orbitals are delocalized

But it is also possible to study the electron pair without information from ELF, by projecting the EPLFN onto the orbital corresponding to the lone pair

$$\epsilon_{\textit{N}} = \frac{\langle \phi_{\rm lp} | {\rm EPLF} \textit{N} | \phi_{\rm lp} \rangle}{\langle \phi_{\rm lp} | \phi_{\rm lp} \rangle}$$

EPLF projected on the lone pair orbital						
Molecule	$\epsilon_0 imes 10^2$	$\epsilon_3 imes 10^6$	N			
TMA	8.28	1.21	557			
DMA	8.34	1.21	514			
MA	8.48	1.96	659			
NH_3	8.36	7.11	1299			
NH ₂ CF ₃	8.32	7.19	1000			
NH ₂ F	8.95	5.41	1452			

EPLF3 in the ELF basin

A descriptor sensitive to the availability of the electron pair

Finally, the proposed descriptors from EPLFN, integrated over the basin defined by ELF, are presented.

EPLF integrated on the ELF basin						
Molecule	ϵ_0	d_0^c	$\epsilon_3 imes 10^3$	d_3^c		
TMA	5.16	2.35	2.89	3.52		
DMA	5.59	2.38	3.10	3.45		
MA	6.20	2.28	4.78	3.01		
NH_3	5.80	2.05	7.76	2.48		
NH ₂ CF ₃	4.28	2.07	6.15	2.70		
NH ₂ F	5.10	1.93	7.02	2.43		

Summary

- ϵ_3 and d_3^c are proposed as descriptors of the lone pair availability
- EPLF may not be the ultimate tool for analyzing electron pair localization
- EPLFN together with ELF provides a reliable, unambiguous description of the lone pair

22 / 24

Outlook

- ullet Study the effect of more sophisticated trial wave functions $\psi_{
 m T}$
- Use forward-walking or reptation MC to obtain pure EPLFN estimator
- Currently applying to a set of 15 experimentally relevant molecules of 100 – 200 electrons.
- Explore EPLFN for the description of chemical bonds, radicals, and other kinds of lone pairs.

23 / 24

Thanks!

José Alfredo Vázquez-Martínez (UNAM, México)

