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How to go beyond the fixed-node approximation for C; and Si> dimer?
How accurate are different forms of the pseudopotential for silicon?
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Pseudopotentials accurate for Si; and defects with HF most accurate.
Fixed-node error can differ dramatically for seemingly similar systems.
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e Comparison of binding energy and bond length with
quantum chemistry and experiment

3. Pseudopotentials for Si; and crystalline Si
e Troullier-Martins, Vanderbilt-85 & Dolg form

e HF, LDA and PBE functionals
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Importance of Defects in Silicon Devices

Motivation
e JTon implantation-induced interstitials  Back end
precipitate as extended {311} defects Front end

* Dopant transient enhanced diffusion

* Radiation damage B-doped  P-doped Si
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* Device simulations require accurate defect properties as input
e Sandia QASPR Project (Qualification Alternatives to Sandia Pulsed Reactor)
* Device simulation code CHARON

‘Provide accurate defect properties with known uncertainty'




Accuracy of density functionals for defects
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Climbing *“‘Jacob’s ladder”
of density functionals
improves the accuracy for
defect formation energies.
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Lowest energy barrier from
X to H defect is similar in
QMC and DFT. The T defect
and its barrier are higher in
QMC.

Energy [meV]
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Benchmark Quantum Monte Carlo Calculations

Stochastic solution of many-body Schrodinger equation:

e Wave function = Jastrow factor x sum of Slater determinants

e Variational Monte Carlo: Energy optimization [Umrigar & Filippi]

e Diffusion Monte Carlo: Ground state projection by
imaginary time Schrodinger equation

Controlled approximations
Statistical error (increase sampling size)
Finite-size (larger systems)

Time-step (smaller time step)

Population control (more walkers, projections)

Grid-size (decrease grid spacing)

Fixed node error (for molecules)

<L

Uncontrolled approximations
Fixed node error (for solids)
Pseudopotential

Pseudopotential locality

Goal: Reduce error of controllable approximations below 0.1 eV.

Estimate error magnitude of uncontrolled approximations.




Functional form of trial wave function
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* Up and down spin determinants of single-particle orbitals

Jastrow J(ri,7j,ri;) = | [exp(Aai) [ [exp(Bi)) ][] exp(Cuiy)

at 17 ]
electron-ion electron-electron electron-electron-ion correlations

Jastrow parameters X N atomtype
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Power of QMC:
Jastrow parameters do the work of determinantal coefficients.




Energy optimization methods

Minimizing the energy on a finite set of MC points,
requires a very large MC sample and is highly inefficient.

The following three methods avoid this by using an expression that for an infinite
MC sample minimizes the energy and for a finite set cancels most of the fluctuations.

1. Modified Newton method:
Umrigar, Filippi PRL 94, 150201 (2005); Sorella PRB 71, 241103 (2005)

2. Linear method for non-linear parameters:

Extension by Umrigar, Toulouse & Filippi1 of linear parameter method by
Nightingale, Melik-Alaverdian, PRL 87, 043401 (2001)

3. Perturbative method:
Modification by Toulouse & Umrigar of perturbative EFP method by
Scemama-Filippi and EFP method by Fahy-Filippi-Prendergast-Schautz



Fixed-Node Approximation for C;
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Fixed-node error of 1 eV reduced by multi-determinant wave function.
Optimization of determinant coefficients improves convergence.




Total energy [Ha]

Energy Extrapolation
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Large fixed node error of 1 eV for C, dimer

Energy converges rapidly with number of determinants
Extrapolation required to obtain accurate total energies

Choice: Linear extrapolation with respect to sum of CSF coefficients
Cancellation of error desired for calculation of energy differences
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Wave function

Smaller error in DMC, still requires error cancellation

Use equivalent basis sets for atom and dimer calculations

Include all excitations within small space of orbitals

CAS-MCSCF wave function provides excellent error cancellation in QMC




Binding energy [eV]
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Binding energy of C; and Si;
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® No systematic improvement in DFT

* Slow convergence with number of determinants in MCSCF
¢ Error cancellation by CAS-MCSCEF necessary for Cz but not Si

® Dramatically different fixed node errors for seemingly different systems
Cz:: 1 eV and Siz: 0.1 eV




DFT
3
N

[ |w

|
q ] 2

[v] mSue[ puog

Bond length of C; and Siz

@)
=
A
@)
=
>
o
QO
90!
@)
=
d.
_ I 21 WM@

_ q aq
= - b
A I a7

_ &bwm\%

@\
O | i

1.35

|
w)
N

30 -
1.20 —

1
1

[v] p3udy puog

Accurate geometries from DFT and quantum chemistry

Bond length less sensitive to Hamiltonian
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LDA pseudopotential overbinds, PBE improves, HF falls in between

Pseudopotential accuracy for energies

Sip

Troullier-Martins Shirley

LDA PBE HF HF

Pseudopotential

Experimental energy not accurate enough to distinguish



Bond length [A]

Pseudopotential accuracy for geometries
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Pseudopotential

Large differences in bond length for different pseudopotentials
Small dependence on r. for all types of potentials

HF pseudopotential most accurate for geometries
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Pseudopotential efficiency for Si

Softer pseudopotentials (larger rc) more efficient
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Shirley HF pseudopotentials twice as efficient as others




Pseudopotential efficiency for Si

Pseudopotential [Ha]
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Softer pseudopotential for larger r.

Pseudopotential [Ha]
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Smaller non-locality for Vanderbilt
construction than Troullier-Martins

More efficient pseudopotentials for:

e Largerr.

e Smaller non-locality in Vanderbilt construction
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Chemical accuracy for binding energies and bond lengths requires

e Optimized multi-determinant wave function for C; and Si2 dimers

7.0

Fixed-node approximation o0
e Small error of 0.1 eV for Si, 3 o o
e Large error of 1 eV for C; :Ej 0 ]
Pseudopotential error E 2ol [DFT]
e Small for Si; with PBE and HF pseudopotentials “)ﬂ
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* Best geometries for HF pseudopotential

Fixed-node error can differ dramatically for seemingly similar systems.




From Compact to Extended Defects

Ion Implantation Planar {311} defect

(Reservoir of mobile single interstitials )
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Di-interstitials Tri-interstitials 0.7eV

Phys. Rev. Lett. 92, 45501 (2004) Rate limiting step
Phys. Rev. B 72, 421306 (R) (2005)



Interstitial Defects in Crystalline Silicon

DMUC for 16 atom defect cells

HF vs. LDA pseudopotentials LDA vs. GGA orbitals
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Pseudopotential error < 0.2 eV Indication of small fixed-node error

Both pseudopotentials and orbitals result in accurate defect energies.
Pseudopotential and fixed-node approximation might be accurate.




