
Accuracy of the Pseudopotential and Fixed-Node 
Approximations in Quantum Monte Carlo

Richard G. Hennig and C. J. Umrigar

How to go beyond the fixed-node approximation for C2 and Si2 dimer? 
How accurate are different forms of the pseudopotential for silicon? 

Quantum Monte Carlo calculations
• Reduction of fixed-node error by optimizing

multi-determinant wave function

• Energy and bond length of C2 and Si2 dimer

compared to quantum chemistry and experiment

• Comparison of different Si pseudopotentials

Pseudopotentials accurate for Si2 and defects with HF most accurate.
Fixed-node error can differ dramatically for seemingly similar systems.
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Outline
1. Accuracy fixed-node approximation for C2

• Multi-determinant trial wave function
• Optimization of determinantal parameters

2. Accuracy for C2 and Si2 dimer and defects
• Comparison of binding energy and bond length with

quantum chemistry and experiment

3. Pseudopotentials for Si2 and crystalline Si 
• Troullier-Martins, Vanderbilt-85 & Dolg form
• HF, LDA and PBE functionals

QMC method and software Cyrus Umrigar, Julien Toulouse, Cornell University
Defect calculations William Parker and Kevin Driver, Ohio State Univ.
DFT and pseudopotential code Jose-Luis Martins, Instituto Superior Tecnico

Eric Shirley, NIST
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Importance of Defects in Silicon Devices
Motivation
• Ion implantation-induced interstitials

precipitate as extended {311} defects
• Dopant transient enhanced diffusion
• Radiation damage

• Device simulations require accurate defect properties as input
• Sandia QASPR Project (Qualification Alternatives to Sandia Pulsed Reactor)

• Device simulation code CHARON

I OI I

Provide accurate defect properties with known uncertainty

face region after the diffusion anneal. Spreading resistance
measurements were used to verify the quoted B concentra-
tions and depth distributions. The sixth oxidized wafer re-
ceived no 10B implant and was used as a reference.

B. Implants, annealing, and diffusion

Low-energy implants !!70 keV" were performed by ex-
tracting negatively charged ions from a sputter source biased
at the desired voltage, without net acceleration inside the
tandem accelerator. The standard procedure to introduce
near-surface implantation damage in silicon samples con-
sisted of room-temperature implants of 40 keV Si" at dose
rates of !1.3#0.6"$1012 ions/cm2/s to total doses ranging
from 5$1012 to 5$1014 ions/cm2. A typical B doping im-
plant was done at room temperature using a 60 keV B2 beam
at a dose of 7.5$1013/cm2, which corresponds to implanting
30 keV B to a dose of 1.5$1014/cm2.

After implantation, samples were chemically cleaned by
successive rinsing with trichloroethylene, acetone, and
methanol, followed by a standard RCA cleaning step. Prior
to being annealed, samples received a 20 s dip in a 1:20
diluted solution of HF. Most anneals were carried out in a
conventional tube furnace with a base vacuum pressure well
below 10"7 mbar. Samples were carried by a support wafer
in a quartz boat and annealed in vacuum or under forming
gas !85% N2, 15% H2, flow rate 1.5 l /min". Varying be-
tween these two annealing ambients was found not to affect
the present nonequilibrium damage and diffusion experi-
ments to a measurable extent, provided that the furnace set-
tings were changed to compensate for temperature shifts.50

Other gas flow conditions have occasionally been used and
are specified in this article where necessary.

The furnace temperature settings were carefully cali-
brated in separate runs using a thermocouple mounted at the
exact location of the samples. Temperature differences be-
tween annealing in vacuum and under gas flow were mea-
sured to be as high as, for instance, #40 °C for a furnace
setting temperature of 700 °C. The temperatures quoted in
the remainder of this article are the calibrated values of the
actual sample temperature during annealing, which are be-
lieved to be accurate to within 10 °C. Some samples were
subjected to a rapid thermal annealing !RTA" step under
forming gas flow. In that case, the temperature was cali-
brated to within 25 °C by measuring the rates of SPE re-
growth of ion-beam-amorphized layers on Si!100"
substrates.51

In order to study interstitial-enhanced diffusion, ion-
damaged B superlattices were annealed under various ther-
mal conditions. Boron depth profiles before and after diffu-
sion were obtained by SIMS at a sputtering rate of 4 Å/s
using 2 keV O2

% . The time-averaged intrinsic B diffusivity
$DB

int% was derived from each diffused doping spike using the
optimization procedure described elsewhere.28,52 The B spike
confined to ion-damaged regions has been excluded in the
diffusion analysis, as it is unclear a priori to what extent
the diffusion of this spike is perturbed by the implantation
damage.

III. INTERSTITIAL INJECTION

A. Results

This section presents TEM studies of the annealing be-
havior of ion-implanted FZ samples. Identical implantation
and annealing conditions were used to study interstitial-
enhanced diffusion in B marker layer structures !Sec. IV",
which will enable a direct link between implantation damage
and TED.

Figure 2 shows a cross-section electron micrograph of a
FZ sample that was implanted with 40 keV Si, 5$1013/cm2

and annealed at 815 °C for 15 s using RTA. The high-
resolution image of Fig. 2 clearly demonstrates the presence
of a defect with a &311' habit plane. A series of cross-section
images demonstrates that these defects are confined to the
top 0.1 (m surface region of the sample. Plan-view analysis
shows a high concentration of elongated defects along $110%
directions, see Fig. 3, and this appearance is consistent with
the notorious ‘‘rodlike’’ or ‘‘&311' defects.’’ 53 These defects
consist of an agglomeration of excess Si self-interstitials and
are known to form in response to the nonequilibrium injec-
tion of interstitials resulting from oxidation,54 electron
bombardment,55 or ion implantation.54,56 Although &311'
have recently been presented as a band of interstitials on a
compact disk,56,57 it is generally recognized that &311' inter-
stitial clusters have an anisotropic, elongated shape. For a
detailed discussion on the structural properties of &311' de-
fects, the reader is referred to a recent review article by
Takeda and co-workers.53

Cross-section and plan-view microscopy were combined
to follow the evolution of &311' defects during annealing. As
is clear from Fig. 3, the areal density of &311' defects drops
by several orders of magnitude upon increasing the anneal-
ing time at 815 °C from 5 to 30 s. Simultaneously, the aver-
age length of the defects increases from roughly 5 to 20 nm.
No defects were detectable for annealing times in excess of 5
min, suggesting complete damage dissolution. The quantita-
tive measurements of defect density and average defect size,
as summarized in Fig. 4, were used to calculate the number
of interstitials contained in &311' defects.58 Figure 5 shows

FIG. 2. Cross-section high-resolution electron micrograph showing &311'
habit plane, and typical image contrast of &311' defects.
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Accuracy of density functionals for defects
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Benchmark Quantum Monte Carlo Calculations

Controlled approximations
Statistical error (increase sampling size)
Finite-size (larger systems)
Time-step (smaller time step)
Population control (more walkers, projections)
Grid-size (decrease grid spacing)
Fixed node error (for molecules)

Uncontrolled approximations
Fixed node error (for solids)
Pseudopotential
Pseudopotential locality

Goal: Reduce error of controllable approximations below 0.1 eV.
     Estimate error magnitude of uncontrolled approximations.

Stochastic solution of many-body Schrödinger equation:
• Wave function = Jastrow factor × sum of Slater determinants
• Variational Monte Carlo: Energy optimization [Umrigar & Filippi]
• Diffusion Monte Carlo: Ground state projection by

                                         imaginary time Schrödinger equation



Functional form of trial wave function

Sum of Slater determinantJastrow factor

ψt = J (ri, rj , rij) ×
∑

n

dnD
↑
nD

↓
n

Determinant

• Up and down spin determinants of single-particle orbitals 

Jastrow

∑

n

dnD
↑
n
D

↓
n

Determinantal coefficients ∝ e
Natom

Jastrow parameters ∝ Natomtype

Power of QMC:
Jastrow parameters do the work of determinantal coefficients.

J (ri, rj , rij) =
∏

αi

exp(Aαi)
∏

ij

exp(Bij)
∏

αij

exp(Cαij)

electron-electron-ion correlations electron-ion electron-electron



1. Modified Newton method:
Umrigar, Filippi PRL 94, 150201 (2005); Sorella PRB 71, 241103 (2005)

2. Linear method for non-linear parameters:
Extension by Umrigar, Toulouse & Filippi of linear parameter method by
Nightingale, Melik-Alaverdian, PRL 87, 043401 (2001)

3. Perturbative method:
Modification by Toulouse & Umrigar of perturbative EFP method by
Scemama-Filippi and EFP method by Fahy-Filippi-Prendergast-Schautz

Energy optimization methods

Minimizing the energy on a finite set of MC points,
requires a very large MC sample and is highly inefficient.

The following three methods avoid this by using an expression that for an infinite 
MC sample minimizes the energy and for a finite set cancels most of the fluctuations.
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Fixed-Node Approximation for C2

Fixed-node error of 1 eV reduced by multi-determinant wave function.
Optimization of determinant coefficients improves convergence.  



• Large fixed node error of 1 eV for C2 dimer 
• Energy converges rapidly with number of determinants
• Extrapolation required to obtain accurate total energies
• Choice: Linear extrapolation with respect to sum of CSF coefficients
• Cancellation of error desired for calculation of energy differences
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• Smaller error in DMC, still requires error cancellation
• Use equivalent basis sets for atom and dimer calculations
• Include all excitations within small space of orbitals
• CAS-MCSCF wave function provides excellent error cancellation in QMC

Cancellation of error for C2 dimer
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• No systematic improvement in DFT
• Slow convergence with number of determinants in MCSCF
• Error cancellation by CAS-MCSCF necessary for C2 but not Si2

• Dramatically different fixed node errors for seemingly different systems
C2: 1 eV and Si2: 0.1 eV

Binding energy of C2 and Si2
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C2 Si2
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• Bond length less sensitive to Hamiltonian

• Accurate geometries from DFT and quantum chemistry

Bond length of C2 and Si2
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• LDA pseudopotential overbinds, PBE improves, HF falls in between

• Experimental energy not accurate enough to distinguish

Pseudopotential accuracy for energies
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Pseudopotential accuracy for geometries

r c
=

1
.5

0
r c

=
1
.7

5
r c

=
2
.0

0
r c

=
2
.2

5

r c
=

1
.5

0
r c

=
1
.7

5
r c

=
2
.0

0
r c

=
2
.2

5

r c
=

1
.2

0
r c

=
1
.3

0
r c

=
1
.4

0
r c

=
1
.5

0
r c

=
1
.6

0

D
o
lg

T
ra

il
 &

 N
ee

d
s

Pseudopotential

2.15

2.20

2.25

2.30

2.35

B
o
n
d
 l

en
g
th

 [
A

] LDA PBE HF

• Large differences in bond length for different pseudopotentials

• Small dependence on rc for all types of potentials

• HF pseudopotential most accurate for geometries 

Si2



• Softer pseudopotentials (larger rc) more efficient
• Shirley HF pseudopotentials twice as efficient as others

Pseudopotential efficiency for Si2
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• Larger rc

• Smaller non-locality in Vanderbilt construction

Pseudopotential efficiency for Si
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Chemical accuracy for binding energies and bond lengths requires
• Optimized multi-determinant wave function for C2 and Si2 dimers

Fixed-node approximation
• Small error of 0.1 eV for Si2 
• Large error of 1 eV for C2

 Pseudopotential error
• Small for Si2 with PBE and HF pseudopotentials
• Best geometries for HF pseudopotential

Fixed-node error can differ dramatically for seemingly similar systems.

Richard G. Hennig and Cyrus J. Umrigar
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DFT QC VMC DMC

Accuracy of the Pseudopotential and Fixed-Node 
Approximations in Quantum Monte Carlo

How to go beyond the fixed-node approximation for C2 and Si2 dimer? 
How accurate are different forms of the pseudopotential for silicon? 



From Compact to Extended Defects
Ion Implantation

Reservoir of mobile single interstitials

Thermal Annealing

Di-interstitials

-2.0eV

I OI I

Planar {311} defect

Chain growth

Rate limiting step

Four-interstitials

chain

compact

-0.7eV

-2.2eV

-0.3eV-2.4eV

Tri-interstitials

Phys. Rev. Lett.  92, 45501 (2004)
Phys. Rev. B 72, 421306 (R) (2005)



Interstitial Defects in Crystalline Silicon 

HF vs. LDA pseudopotentials LDA vs. GGA orbitals

Both pseudopotentials and orbitals result in accurate defect energies.
Pseudopotential and fixed-node approximation might be accurate.
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