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Positrons

e Positrons are anti-electrons (solutions of Dirac equation).

e Positrons are produced in 37 decays of proton-rich nuclei,
e.g. 13Al2 — {3Mgiz + BT +v.

e A positron may bind with an electron to form a positronium atom.

e Ground-state energy of positronium is —1/4 a.u. (Like hydrogen atom, but reduced
mass of electron is 1/2.)

e Annihilation of a parallel-spin electron-positron pair is a 3rd order process in quantum
electrodynamics, producing 3 photons.



Annihilation of an antiparallel-spin electron-positron pair is a 2nd order process,
producing 2 photons.

We consider only 2-photon annihilation events (experimentally relevant).

Two-photon annihilation cross-section is ¢ = 7/(vc3), where v is the positron velocity
and c is the speed of light (in a.u.).!

Positron annihilation is widely used to study material properties. Usual source of
positrons in experiments: $9Nall — 22Ne!? + 8+ + v + 7.

IP. A. M. Dirac, Proc. Cam. Phil. Soc. 26, 361 (1930).



Positron Lifetime Spectroscopy (POLIS)

Suppose a positron is injected into a sample of material.

Positron rapidly thermalises and diffuses through material, before ending up in its
ground state. (Often settles in negatively charged defects.)

Positron remains in ground state for some time before annihilating an electron.

Measure time difference between positron birth (one 1.274 MeV photon emitted) and
annihilation (two 0.511 MeV photons emitted).

Annihilation rate is characteristic of the defects at which positrons settle.

Sensitive, nondestructive technique allowing simultaneous measurement of type and
quantity of defects in metals and semiconductors.
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Sensitivity of different experimental methods to defect concentration and size as a
function of depth. Green box indicates depth, size and concentration relevent to studies
of defects in electronic interconnects on semiconductor chips.



Annihilating-Pair Momentum Spectroscopies

e Conservation of momentum: total momentum of v rays equals momentum of electron
with which positron annihilates.

e Measure distribution of momenta of annihilation radiation to find out distribution of
electron momenta.

e Angular correlation of annihilation radiation (ACAR) spectroscopy and Doppler-
broadening spectroscopy (DOBS) are powerful methods for identifying defects and
measuring Fermi surfaces.
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Magnetically confined positron beam for DOBS experiments at the University of Bath



Applications of Positron Annihilation Spectroscopy

Recent PAS studies at the University of Bath include:

e Surface modification of polymer films by laser or plasma treatment;
e Defects caused by the implantation of Ge ions into SiC;

e Transition region between SiO5 and Si;

e Fluorine diffusion and agglomeration in Si;

e Interfaces between nanocrystals of Si and a silica matrix;

e Defects in ferroelectric films.



Challenges for Theory

Positron modifies electron charge density and momentum distribution.

Annihilation rate by a naive calculation from cross-section:

where c is speed of light and n is electron number density.

Actual annihilation rate is higher, because positron attracts electrons to it: contact
density enhancement.

Positron causes increase in momentum distribution near Fermi edge: Kahana
enhancement.?

2S. Kahana, Phys. Rev. 129, 1622 (1963).



Positron Immersed in a Homogeneous Electron Gas

e Want to calculate annihilation rates and annihilating-pair momentum distributions
for positrons in real materials.

e First step: calculate annihilation rate and momentum distribution for a positron in a
homogeneous electron gas.

e Use energy data to construct electron-positron correlation functionals, enabling DFT
simulations of positrons in real materials.



Electron-Positron Hamiltonian

e Hamiltonian for positron in homogeneous electron gas:
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e Make coordinate transformation suggested by Leung et al.’
| N
X = N1l (s + Zrz>
X, = TI;—S.

e [hen Hamiltonian is

H= 1 o° _Z 82 ZZ 1
N 2(N + 1)(9X2 8x z : 8xz(‘9x] ‘ X; — Xj| .

)

3C. H. Leung, et al., Phys. Lett. 57A, 26 (1976).



e First term on RHS is CoM KE operator. May neglect in ground state.

e Left with Hamiltonian for IV interacting particles of mass 1/2 a.u. and charge —1 a.u.
in the presence of a fixed positive charge of magnitude 1 a.u. at the origin.

e There is an additional interaction, resembling mass-polarisation. This was neglected
by Leung et al., who argued that it is small.



Additional Interaction

e Suppose W is a product of determinants of orthonormal orbitals {¢;} for spin-up and
spin-down electrons. Then

<\p Z _Z \1;> = S (WilVu) - (V)

1=1 7=1
— 5m5i,m5j <¢z\v%> ) <¢]‘vwz>)a

where m. is the spin of particle 7.

e First term vanishes in a closed-shell ground state. We consider only closed-shell
ground states.

e Require expectation of transformed Hamiltonian to be stationary with respect to
variations in each 1;; obtain one-electron DFT equations:

[~ V2 + Vi (%) + Vexe(x) + Vie(x)] %1(x)
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where Vi, Voxt and Vi are the Hartree, external and exchange-correlation potentials,
and f; and €; are occupation no. and eigenvalue of state j.

e Equations are solved by a modified version of the CASTEP plane-wave DFT code.*

*M. D. Segall et al., J. Phys. Cond. Matt. 14, 2717 (2002).



Positron Pseudopotential

We use an ultrasoft positron pseudopotential.
All-electron orbitals recovered using projector augmented-wave method.

Have checked that results are converged w.r.t. cutoff radius, number of projectors,
plane-wave cutoff energy, etc.

We have used the bare Coulomb potential in some of our calculations.

Bare Coulomb and pseudopotential calculations are in agreement.



Overlap Integral Theorem for Determinants

Theorem®: Let

Pi(ry) - Yn(r1)
U(R) = ; :
Yi(ry) o Yn(rN)
and
¢1(r1) -+ on(r1)
¢(R) = : :
¢1(rn) -+ on(rN)
Then
(V1ld1) -+ (Y1lon)
(U|®) = N! : :
(WnlP1) -+ (Unl|on)

°P. O. Léwdin, Phys. Rev. 97, 1474 (1955).



Annihilating-Pair Momentum Distribution

CoM and difference coordinates: ¥; = (r; +s)/2 and dr; =r; —s.

Positron-electron 1 centre-of-mass momentum wave function:

- 1

\If(f)l, (51‘1; ro,... ,I‘N) — V/exp(—if)l . f‘l)\If(fl, 51‘1;1'2, ... 7I‘N) df‘l,

Assumption: distribution of annihilating-pair momenta same as distribution of CoM
momenta when positron coincides with an electron of opposite spin.

Unnormalised distribution of the CoM momentum for positron annihilating with
electron 1:

T 2
/---/|\I!(p1,0;r2,...,rN)] dry . ..dry.
Normalise and use antisymmetry of wave function to get momentum distribution:
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e Now suppose
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e [hen numerator of momentum distribution is

pul®) = s | [ ewp (- r)




... dr’; drf drq
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e We have: (i) substituted R = ry —r}; (ii) substituted r;, =1/ — 1} Vi € {2,..., N},
allowing us to perform the integral over ry; (iii) made use of the overlap integral
theorem; (iv) defined M;,; to be the (4, 7)th minor of

617(0) - oy, (0)
61°(r2) oo O (r2)

¢1*(I'NT) ¢E<T(rNT)



and (v) defined INV;; to be the (7, j)th minor of

pl0) - Bk (0)
Plr2—R) - gL (R
iy, —R) -+ én (rn; —R)
e For each 7,5 € {1,..., N1}, we can use the overlap integral theorem to determine a

(N7} — 1) x (N7 — 1) matrix BR(4, j) such that

1
det (BR(’L ])) (N, =11 / /MMNU dry...dry,.

e So unnormalised annihilating-pair momentum distribution is

N; Nj

m@)=/m@pRZZ 1)1 (0)6!(0) det (BR(i, 7))

=1 7=1
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Electron-Positron Pair-Correlation Function

e Spin-down positron—spin-up electron pair-correlation function:

gT(ra S) —

e Denominator:
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e Numerator:
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where N;; is the (7, j)th minor of

or(r—s) - Gy (r—s)
or(rs) - Gy (r2)
QﬁI(TNT) T @vT(I'NT)

and the overlap integral theorem is used to define the matrix B(¢, j) for each ¢ and j.



e So
VIS ()6 (- 9)6] (x — ) det(B(,9))
(llo1) - (d1lon,)

g'(r—s)

Ny

(SN, 181) - (O |on,)
e Have written a code to evaluate the momentum distribution and PCF.

e NB, augmented orbitals (pseudo-orbitals in plane waves plus augmentation functions
on radial grid) must be used.



Contact Density Enhancement and Annihilation Rate

e Probability density that a spin-up electron coincides with the positron:

Ny

Neg — 79 (O)

e This contact density should be used to calculate annihilation rate using the 2-photon
annihilation cross-section.

e Annihilation rate for spin-up electrons with a spin-down positron:

39(0)
4e3r3

A =



Immersion and Relaxation Energies

e Let E(N,M,V) be the energy of a uniform plasma of N electrons and M positrons
in fixed volume V.

e Immersion energy of a positron:

AE=E(N+1,1,V)— E(N,0,V) — E(1,1,V).

e Relaxation energy of a positron:

A

E(N+1717V>_E(N+1707V)
— AE+E(N,0,V)—E(N+1,0,V)+E(1,1,V)
= AE—pu(N,V)+EQ1,1,V)+0ON™Y,

where

oF
ON N,0,V

is the zero-temperature chemical potential of the N-electron HEG.



In the infinite-system limit,

AQ(rs) = AE(rs) — u(rs) + Epos,

/Zero-temperature chemical potential of a HEG is given by

d 1 d€&
U = d—n(n(c;) = g — §Tsdrs7

where n is number density and £ is total energy per electron.
Chemical potential is easily calculated within HF theory.

Correlation chemical potential has been parametrised by Perdew and Zunger® (using
Gell-Mann & Brueckner's analytical result for high-density HEG and Ceperley-Alder
DMC data for ry > 1).

©). P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
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e Hence we can obtain the immersion energy from relaxation-energy calculations and
vice versa.



Electron-Positron Correlation Functionals

If there is no electron-positron correlation then the positron occupies its zero-
momentum ground state.

In this case, energy of the HEG+positron is same as energy of the HEG.

So the electron-positron correlation energy is the difference of the energy of the
HEG+-positron and the HEG.

This is just the relaxation energy; can calculate it as a function of r,.

Hence we can construct an electron-positron correlation functional, for use in DFT
studies of positrons in real materials.
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e Our results agree with the VMC calculations of Ortiz.

e Extra interaction is important, especially at high densities.

P. A. Sterne & J. H. Kaiser, Phys. Rev. B 43, 13892 (1991); E. Boronski & R. M. Nieminen, Phys. Rev. B 34, 3820
(1986); J. Arponen & E. Pajanne, J. Phys. F 9, 2359 (1979); G. Ortiz, PhD thesis, Lausanne (1992); L. Fraser, PhD thesis,
London (1995); V. Apaja et al., Phys. Rev. B 68, 195118 (2003); H. Stachowiak & J. Lach, Phys. Rev. B 48, 9828 (1993);
L. J. Lantto, Phys. Rev. B 36, 5160 (1987).



Annihilating-pair momentum distribution
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e Well behaved for small systems, badly behaved for large ones.

e Perhaps CASTEP is converging to the wrong self-consistent solution?

8E. Boroniski & R. M. Nieminen, Phys. Rev. B 34, 3820 (1986)



QMC Studies of Positrons in Electron Gases

Previous QMC studies of positrons in HEGs have used plane-wave orbitals for the
electrons and positron.

At low densities positron binds with a single electron to form a positronium atom.

Plane-wave orbitals are inappropriate for describing positronium.

We can use modified CASTEP to generate orbitals for CASINO; no difficulty describing
positronium.

Will either have to (i) modify DMC Green's function etc. in accordance with the
transformation to the Hamiltonian or (ii) use the electron coordinates relative to the
positron in the Slater wave function.

Option (ii) is probably the easiest way to proceed.

DMC should be able to provide definitive answers to these technologically
important questions about the behaviour of positrons in materials.
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