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Introduction

Introduction

QMC simulations of solids study finite systems subject to periodic
boundary conditions.

We really want to model infinite systems.
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Introduction

The small system size leads to finite-size errors.
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Introduction

Since the QMC finite-size errors behave like the LDF (or HF) errors,
we apply LDF (or HF) finite-size corrections.
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Introduction

The residual finite-size errors decay very slowly — roughly like
1/N.

They arise from the exchange-correlation part of the Coulomb
energy.

They can be problematic.
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Introduction

Similar errors are seen in HF calculations, but in this case we can
study very large systems . . .
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Introduction

. . . and extract the scaling convincingly:
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Introduction

Questions
Does the XC energy really converge like 1/N?

If so, why does the exchange energy converge like 1/N2/3?

Very recently, Chiesa, Ceperley, Martin and Holzmann, and,
independently, Gaudoin and Pitarke, proposed a new way of
dealing with Coulomb finite-size errors. How does this relate to the
MPC method? Is it actually different? Is it better?

To answer these questions, we need to think hard about the treatment
of Coulomb interactions in infinite periodic systems.
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Coulomb interactions in periodic systems Which Coulomb energy?
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Coulomb interactions in periodic systems Which Coulomb energy?

Which Coulomb energy?

Consider a simulation cell containing N unit point charges plus a
cancelling uniform background.
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Coulomb interactions in periodic systems Which Coulomb energy?

To model a solid, embed the cell in a lattice of identical copies of
itself.

Calculate the Coulomb energy per cell as a function of lattice size
and let the lattice size tend to infinity to get a result for the solid.
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Coulomb interactions in periodic systems Which Coulomb energy?

But which answer do you want?

Because of the long range of the Coulomb interaction, result depends
on cluster shape even in the limit as the cluster size → ∞!
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Coulomb interactions in periodic systems The Ewald interaction
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Coulomb interactions in periodic systems The Ewald interaction

The Ewald interaction

It seems most natural to adopt “tin-foil” boundary conditions,

yielding the periodic Ewald interaction/potential.
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Coulomb interactions in periodic systems The Ewald interaction

Reciprocal-space representation

To within an (irrelevant) arbitrary constant, the Ewald potential due to a
point charge δ(r), its cancelling uniform background, and all its images,
may be obtained by solving Poisson’s equation

∇2vEw(r) = −4π

(

δ(r) − 1
Ω

)

,

within one unit cell subject to periodic boundary conditions.

Evaluating the reciprocal lattice vector Fourier components gives:
∫

Ω
e−iG·r∇2vEw(r)dr = −4π

∫

Ω
e−iG·r

(

δ(r) − 1
Ω

)

dr

−G2ṽEw(G) =

{

−4π G 6= 0
0 G = 0

.
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Coulomb interactions in periodic systems The Ewald interaction

Although the Fourier components ṽEw(G) are well defined, the
corresponding Fourier series

vEw(r) =
1
Ω

∑

G 6=0

4π

G2 eiG·r

does not converge and is just as useless as the real space sum of 1/r
potentials considered earlier.
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Coulomb interactions in periodic systems The Ewald interaction

The Ewald formula

A practical method for evaluating the Ewald interaction is obtained by
splitting up the charges as follows:

The periodic potential corresponding to the first, smooth,
distribution may be expressed as a rapidly convergent Fourier
series.

The short-range potential from a delta function plus its neutralising
Gaussian may be evaluated in real space.
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Coulomb interactions in periodic systems The Ewald interaction

Reciprocal space revisited

The Ewald formula is

vEw(r) =
4π

Ω

∑

G(6=0)

exp
(

−κ2G2

2 + iG · r
)

G2 − 2κ2

π
+

∑

R

erfc
(

|r−R|√
2κ

)

|r − R|

where κ is the width of the auxiliary Gaussian charges.
Although numerically efficient, this formula is analytically awkward.

If we choose ǫ = κ/
√

2 very small and assume that |r − R| ≫ ǫ, then

vEw(r) ≈ 1
Ω

∑

G(6=0)

4πe−ǫ2G2
eiG·r

G2 .

This convenient Fourier representation is far wrong in tiny regions of
radius ǫ about each lattice point, but very accurate elsewhere.
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Coulomb interactions in periodic systems The Ewald interaction

The Madelung potential

The constant

vM = lim
|r|→0

(

vEw(r) − 1
r

)

is called the Madelung potential. It is the potential at a unit point charge
due to the cancelling background and all the images of that charge.

Its approximate Fourier representation is

vM ≈ 1
Ω

∑

G(6=0)

4πe−ǫ2G2

G2 −
∫

all space

4πe−ǫ2G2

G2

dG
(2π)3 .
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Exchange and correlation The exchange-correlation hole
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Exchange and correlation The exchange-correlation hole

The exchange-correlation hole

Definition
The pair density n(r, r′)drdr′ is the probability of finding one particle in
box dr and a second particle in box dr′.

Writing

n(r, r′) = n(r)n(r′|r)
n(r′|r) = n(r′) + nxc(r′, r)

then defines the XC hole.
The sum rule

∫

n(r′|r)dr′ = N − 1 ⇒
∫

nxc(r′, r)dr′ = −1 .
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Exchange and correlation The exchange-correlation hole
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Exchange and correlation The exchange-correlation energy
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Exchange and correlation The exchange-correlation energy

The exchange-correlation energy

The energy expectation value in a QMC simulation contains several
terms:

Kinetic energy.

Potential energy of interaction between electrons and ions.

Hartree energy.

Exchange-correlation energy.

Of these, it is the exchange-correlation energy — the term describing
the effect of the pair correlations on the total energy — with which we
are concerned here.

(QMC in the Apuan Alps II) Finite-Size Corrections July 2006 25 / 60



Exchange and correlation The exchange-correlation energy

The XC energy arises from the interaction between the electrons and
their XC holes

Exc =
1
2

∫

nAv
xc (r)(vEw(r) − vM )dr

=
1
2

∫

nAv
xc (r)vEw(r)dr +

vM

2

where vM is the Madelung potential and nAv
xc (r) is the system-averaged

XC hole:

nAv
xc (r) =

∫

Ω n(r′)nxc(r′, r′ + r)dr′
∫

Ω n(r′)dr′
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Exchange and correlation The exchange-correlation energy

Why vEw(r) − vM?

The Ewald potential vEw(r) includes contributions from
◮ the electron at the origin,
◮ its background,
◮ all its images.

Only the first of these ought to contribute to the XC energy.
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Finite-size errors Real-space approach
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Finite-size errors Real-space approach

Real-space approach to finite-size errors

Exc =
1
2

∫

nAv
xc (r)(vEw(r) − vM)dr

Since nAv
xc (r) converges quite rapidly to the infinite system-size

limit, the error must be in the interaction.

Expanding vEw(r) − vM about r = 0 gives

vEw(r) − vM =
1
r

+
2πr2

3Ω
+ O(r4) .

In an infinite system, this reduces to 1/r as expected; in a finite
system, the quadratic term gives a 1/Ω ∼ 1/N error.
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Finite-size errors Real-space approach
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Finite-size errors Real-space approach

The modified periodic Coulomb interaction

Replace

Exc =
1
2

∫

nAv
xc (r)(vEw(r) − vM)dr

by

Exc =
1
2

∫

nAv
xc (r)
r

dr

Use minimum image convention to extend 1/r periodically.

Keep Ewald interaction for Hartree energy terms.
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Finite-size errors Real-space approach

Fixes 1/N error. Works well for exchange-correlation energy.
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Finite-size errors Real-space approach

Doesn’t fix 1/N2/3 error seen in Hartree-Fock calculations.
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Finite-size errors Real-space approach

Origin of HF error

Since the MPC interaction is exactly correct within the cell, the HF
error must arise from the form of nAv

x (r).

For large r in a uniform electron gas

nAv
x (r) ∼ r−4 .

Hence
∫ ∞

L

nAv
xc (r)
r

4πr2dr ∼
∫ ∞

L
r−3dr ∼ L−2 ∼ Ω−2/3 .

The exchange hole does not “fit in” to the simulation cell.
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Finite-size errors Reciprocal-space approach
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Finite-size errors Reciprocal-space approach

Reciprocal-space approach to finite-size errors

Re-expressing Exc in k-space:

Exc =
1
2

∫

Ω
nAv

xc (r)vEw(r)dr +
vM

2

=
1

2Ω

∑

G(6=0)

4πñAv
xc (G)e−ǫ2G2

G2

+





1
2Ω

∑

G(6=0)

4πe−ǫ2G2

G2 − 1
2

∫

4πe−ǫ2G2

G2

dG
(2π)3





and rearranging . . .
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Finite-size errors Reciprocal-space approach

. . . gives

Exc =
1

2Ω

∑

G(6=0)

4π(ñAv
xc (G) + 1)e−ǫ2G2

G2 − 1
2

∫

4πe−ǫ2G2

G2

dG
(2π)3

S̃(G) = ñAv
xc (G) + 1 is called the static structure factor.

Since S̃(G) is (normally) proportional to G2 at small G, the
summand does not diverge as G → 0.

The convergence factors are required.
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Finite-size errors Reciprocal-space approach

In the Ω → ∞ limit, the sum becomes an integral and we obtain the
standard result

Exc → 1
2

∫

4π(S̃(G) − 1)e−ǫ2G2

G2

dG
(2π)3 .
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Finite-size errors Reciprocal-space approach

Exc =
1

2Ω

∑

G(6=0)

4πS̃(G)e−ǫ2G2

G2 − 1
2

∫

4πe−ǫ2G2

G2

dG
(2π)3

Chiesa asserts that the leading contribution to the error arises
from the omission of the G = 0 term.

Expanding ñAv
xc (G) and S̃(G) about G = 0,

ñAv
xc (G) = −1 + αG2 + . . . S̃(G) = αG2 + . . . ,

gives the finite-size correction

∆Chiesa =
2πα

Ω
.

The constant α can be obtained from RPA theory or by
extrapolating the calculated S̃(G) towards G = 0.
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Finite-size errors Reciprocal-space approach
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Finite-size errors Reciprocal-space approach
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Finite-size errors Reciprocal-space approach

Scaling of the Hartree-Fock error

SHF(k) is not quadratic near k = 0:
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Finite-size errors Reciprocal-space approach

The missing G = 0 term in

Ex =
1

2Ω

∑

G(6=0)

4πSHF(G)e−ǫ2G2

G2 − 1
2

∫

4πe−ǫ2G2

G2

dG
(2π)3

is therefore infinite!

Instead, add analytic integral of 4πSHF(k)/k2 over small sphere of
volume equal to the volume of k-space per reciprocal lattice vector.

This correction scales like N−2/3.
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Finite-size errors Reciprocal-space approach
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Finite-size errors Link between the two approaches
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Finite-size errors Link between the two approaches

Link between the two approaches

According to Chiesa,

Exc = EEw
xc +

2πα

Ω
, where ñAv

xc (G) = −1 + αG2 + . . . .

Since ñAv
xc (G) =

∫

Ω
nAv

xc (r)e−iG·rdr

= −1 − 1
6

G2
∫

Ω
nAv

xc (r)r2dr + . . . ,

it follows that

α = −1
6

∫

Ω
nAv

xc (r)r2dr .
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Finite-size errors Link between the two approaches

Hence, the reciprocal-space correction is equivalent to

Exc = EEw
xc − π

3Ω

∫

Ω
nAv

xc (r)r2dr .

According to the real-space MPC approach,

Exc =
1
2

∫

Ω

nAv
xc (r)
r

dr

=
1
2

∫

Ω
nAv

xc (r)
(

vEw(r) − vM − 2πr2

3Ω
+ . . .

)

dr

= EEw
xc − π

3Ω

∫

Ω
nAv

xc (r)r2dr + . . . .

Conclusion
Reciprocal-space correction is a quadratic approximation to the MPC
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Finite-size errors Strengths and weaknesses
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Finite-size errors Strengths and weaknesses

Strengths and weaknesses (provisional)

If the XC hole “fits in” to the simulation cell, the reciprocal-space
approach is inferior to the real-space approach.
If not, the two differ:

◮ The real-space approach uses the right interaction but the
approximate “squashed” hole; it therefore overestimates the
magnitude of the XC energy.

◮ The reciprocal-space approach can employ an analytic
approximation to S̃(G) for small G. This can be substantially better
than “squashing” the hole.

Would you rather modify the Hamiltonian or apply a correction
after the simulation?
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Finite-size errors Strengths and weaknesses

When is the real-space approach exact?

The real-space approach is exact if

The shape of the XC hole is right.

The XC hole “fits in” to the simulation cell.
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Finite-size errors Strengths and weaknesses

When is the reciprocal-space approach exact?

The reciprocal-space approach is exact if

The shape of the XC hole is right (so that calculated S̃(G) is
correct).

The exact S̃(k) is obtained by interpolation from S̃(G) and the
k-space integral is evaluated exactly.

In practice, the second of these seems unlikely . . ..
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Finite-size errors Strengths and weaknesses

Quadrature and the sampling theorem

Suppose that

φ(r) =

∫

φ̃(k)eik·r dk
(2π)3

is a smooth and rapidly decaying function of r.

Consider a lattice of replicas

φper(r) =
∑

R

φ(r − R) .

Since φper(r) is periodic, it has a Fourier series

φper(r) =
1
Ω

∑

G

φ̃per(G)eiG·r .
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Finite-size errors Strengths and weaknesses

The Fourier components are

φ̃per(G) =

∫

Ω

∑

R

φ(r − R)e−iG·rdr =
∑

R

∫

Ω
φ(r − R)eiG·(r−R)dr

=

∫

φ(r)e−iG·rdr = φ̃(G) .

Thus
∑

R

φ(r − R) =
1
Ω

∑

G

φ̃(G)eiG·r .

Sampling Theorem

If φ(r) dies off rapidly enough as r increases, we can reconstruct it
exactly from the discrete samples φ̃(G) of its Fourier transform.
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Finite-size errors Strengths and weaknesses

∑

R

φ(r − R) =
1
Ω

∑

G

φ̃(G)eiG·r

Poisson summation formula

Setting r = 0 and noting that φ(0) =
∫

φ̃(k) dk
(2π)3 gives

∫

φ̃(k)
dk

(2π)2 =
1
Ω

∑

G

φ̃(G) −
∑

R(6=0)

φ(R) .

If φ(R) = 0 for all R 6= 0, the discrete quadrature is exact!
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Finite-size errors Strengths and weaknesses

Once the “missing” G = 0 term has been included, the
reciprocal-space expression for the XC energy is:

Exc =
1

2Ω

∑

G

4πS̃(G)e−ǫ2G2

G2 − 1
2

∫

4πe−ǫ2G2

G2

dG
(2π)3

The quadrature is exact if the inverse FT of 4πS̃(k)/k2 dies off to
zero within radius |R|.
S̃(k) = ñAv

xc (k) + 1 ⇒ S(r) = nAv
xc (r) + δ(r).

The inverse FT of 4πS̃(k)/k2 is the Coulomb potential due to the
charge density S(r).
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Finite-size errors Strengths and weaknesses

The reciprocal-space approach is exact if the potential of the charge
distribution nAv

xc (r) + δ(r)

dies away to zero before |r| reaches |R|.
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Finite-size errors Strengths and weaknesses

Strengths and weaknesses revisited

The real-space approach is exact if
◮ The shape of the XC hole is correct.
◮ The XC hole “fits in” to the simulation cell.

The reciprocal-space approach is exact if
◮ The shape of the XC hole is correct.
◮ The potential of the charge distribution nAv

xc (r) + δ(r) dies away to
zero before |r| reaches |R|.

If the second moment of the sampled XC hole is inaccurate, both
methods can be improved by using RPA values.

Which method is better? Little to choose between them.
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Finite-size errors Strengths and weaknesses

KE errors

Chiesa also points out that an RPA Jastrow factor

exp
[

−
∑

i>j

u(rij)
]

,

with u(r) ∼ 1/r at large r (and hence ũ(k) ∼ 1/k2 at small k),
contributes

− 1
4Ω

∑

G(6=0)

G2ũ(G)[S̃(G) − 1]

to the KE expectation value
〈

−1
2

∑

i

∇2
i ln |Ψ|

〉

This term shows an analogous 1/N error.
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Finite-size errors Strengths and weaknesses

Louisa Fraser and I did not see this KE error. But we were doing
VMC with short-range Jastrow factors.

The RPA Jastrow factor ought to be accurate at large r , so the KE
error should be visible in DMC, regardless of the choice of trial
function.
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Summary

Summary

The two approaches to finite-size errors in simulations of
Coulombic systems are almost equivalent.

Chiesa’s identification of the long-range KE errors is useful.

A simple reciprocal-space finite-size correction works well in HF
calculations.
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