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 Solving many-particle Schrodinger equation by fixed-
node diffusion Monte Carlo (FNDMC) 
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f R , t=∫G*R , R ' , f R ' , t d R '

lim∞ f R ,  ∝  T Rground R

                Fermion node:  defined as                      

                 Fixed-node approximation:                             
          
          
                 Antisymmetry (nonlocal) replaced by a boundary (local)
           
           

G*R , R ' ,=
〈R∣exp −H∣R ' 〉
T R 'T

−1R

f R , t 0

f R , t =T R R , t  , T=HF eUcorr=det { }det {}e
Ucorr

r1 , r2 , ... , rN=0



Experience with the fixed-node DMC: applicable to 
tens/hundreds of valence electrons – but ...
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Methods
which work 
here ???
(beyond the
fixed-node ...)
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 Fermion node: manifold of configurations for which 
the wave function vanishes

The (only) approximation in quantum Monte Carlo
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f R , t=∫G*R , R ' , f R ' , t d R '

               Fermion node:                                         (dN-1)-dimen. hypersurface

         Fixed-node approximation:                    (boundary replaces antisymmetry)      
               

                    The Schrodinger eq.

          
         
                           Exact node       ->     exact energy in polynomial time

      

f R , t 0

f R , t∞=Trial RGround R 

r1 , r2 , ... , rN=0

      Exact nodes:   -   in 1D, particle concidence points  
                               -   in 3D known for a few 2e and 3e states

       In general,  high-dimensional problem influenced by many-body
                                                                         effects and interactions



Antisymmetry/fermion sign problem: various ideas 
how to deal with the nodes
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”Sample-it-out”:            - nodal realease (Ceperley '80s)
                                        - walker pairing algorithms (Kalos '90s)
                                        - transform into another space 
                                          (Hubbard -Stratonovitch) ...

 “Capture the physics (the nodes will follow)”: 
                                         - more elaborate wavefunctions 
                                         - backflow 
                                         - pair orbitals, pfaffians, ...

 “Understand the nodes”:  - general properties
                                              - new insights, more fundamental issue (?)  
   
       Key questions: - correct topology, ie, number of nodal cells
                                  - correct shape
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Topology of a few-electron exact nodes, numerical 
studies -> Conjecture: for d >1 ground states have 

only two nodal cells, one “+” and one “-”
                                            
            So far unproven even for noninteracting systems !

Tool to demonstrate some          has only two cells (Ceperley '92,
 numerical proofs up to 200 noninteracting fermions): 

Find a point such that triple exchanges connect all the particles
into a single cluster: then there are only two nodal cells

                         +    _
                                     rN

    r1    

             r2

           All-particle
      configuration 
                   space

R 



Lubos_Mitas@ncsu.edu

Explicit proof of two nodal cells for spin-polarized 
noninteracting system for any size

(Idea illustrated for 2D harmonic fermions)

Evaluated explicitly by recursion:
factorizing out “lines of particles” 

             

By induction: if       particles are connected, then also          . QED.

M 1,. .. , NM=M−11,. .. , NM / I1
∏i j

i , j∈I1 y j−yi∏1k≤M
k−1

nk

.

.

1 ... M M1

M 1,. . , NM=Cgauss det [1, x , y , x2 , xy , y2 , ...]

Place fermions in a Pascal-like triangle 

     lines ->                                   particles

The wavefunction:

M

.

M1

1

3

21

NM=M1M2/2M

NM NM1
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The key points of the proof:
a) Slater matrix elements are multivariate monomials  
 b) configuration enables to factorize the determinant

  The factorization enables to explicitly show that the particles
   are connected

    Any model which transforms to homogeneous polynomials!

- fermions in a periodic box

- fermions on a spherical surface   

- fermions in a box
       
   homeomorphic variable map:                                                   
         
  

nm x , y=sin xsin yUn−1pUm−1q 

Y lm  ,=cosn sineim

p=cosx , q=cosy  pm qn

nm x , y=ei nxmy=zn wm
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2D periodic fermions: similar factorization 
3D or higher: the same idea

                                              - particles on the line 

  
                                             
                                              - complete wavefunction

- induction step: particles a,b,c connected  

Factorization works for any d>1 (!!!):  lines, planes, hyperplanes 

1,. .. , N =∏k=0

M

[1 DIk∏ jk
sinn j j k /2]

1 D... , il
k , ... , im

k  , ...=∏lm
sin l m /2

x=k
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Two nodal cells theorem: generic (and fundamental) 
property of fermionic ground states of  many models

Two nodal cells theorem. Consider a spin-polarized system 
with a closed-shell ground state given by a Slater determinant 
times an arbitrary prefactor (which does not affect the nodes)

Let the Slater matrix elements be monomials             
 of positions or their homeomorphic maps. 

Then the wavefunction has only two nodal cells.

With some effort can be generalized to some open shells. 

exact=C 1,. .. , N det {i  j}
xi

n yi
m zi

l ...
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What if matrix elements are not monomials ?
 Atomic states (different radial orbitals for subshells):
Proof of two cells for nonint. and HF wavefunctions

- position subshells of electrons onto spherical surfaces: explicit
  factorization

- exchanges between the subshells: simple numerical proof up
  to size 15S(1s2s2p33s3p33d5) and beyond (n=4 subshell)

                                                                    
                                                                        123 -> 312
                                                                        326 -> 632
                                                                              . . . 
                                                                        
  

             
      

HF=1s2 s2p33s3p3 d5 ....
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For noninteracting/HF systems adding another spin 
channel or imposing additional symmetries generate 

more nodal cells

 Unpolarized nonintenracting/HF systems: 2*2=4 nodal cells,
        ->    product of two independent Slater determinants

- in general, imposing symmetries generates more nodal cells:

  the lowest quartet of S symmetry 4S(1s2s3s) has six nodal cells 

         What happens when interactions are switched on ?

        “Nodal/topological degeneracy” is lifted and multiple
              nodal cells fuse into the minimal two again!

      First time showed on Be atom, Bressanini etal '03
 

HF=det  { }det  {}
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Illustrate the general proof idea on a singlet of 
interacting harmonic fermions with
BCS as variational wave function

Consider 6 harmonic 2D fermions in the singlet ground state.
Rotation by      exchanges two particles 
in each spin channel, they lie on HF node:

            
Describe the correlation using the 
BCS wavefunction:  

pairing function includes the virtuals from
the first unoccupied subshell

Nonvanishing for arbitrarily weak interaction!

                                                      
 

i , j=HF i , jcorr i , j

BCS=det {i , j}= ra rb cos[2 ra rb cos 2−ra
2−rb

2 ]≠0

HF=0


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Correlation in the BCS wavefunction is enough to fuse 
the noninteracting four cells into the minimal two 

Arbitrary size: position
the particles on HF node
(wf. is rotationally invariant)

HF pairing (sum over occupieds, linear dependence in Sl. dets)

   
BCS pairing (sum over occupieds and virtuals, eliminate lin. dep.)

                                                      
 

i , j=HF i , jcorr i , j

HF=det [HF i , j]=det [∑n
n in  j]=det [n i]det [n  j]=0

BCS=det [BCSi , j]≠det [nm i]det [nm  j]  BCS≠0
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Homogeneous electron gas: the spin-up and -down 
subspaces are interconnected as well; other 

interacting models

r1 =r6  , r2 =r7  , ... , r5 =r10 

r1   r2  r5   r6 

HF=0
BCS≠0

Translation by L/2 in y direction
exchanges 

Translational invariance implies
that the wavefunction is constant

Other interacting models: similar
construction
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Correlation in homogeneous electron gas: singlet pair 
of e- winds around the box without crossing the node

r i =r i5 offset , i=1,. .. ,5

Correl.
    

            HF

HF crosses the node multiple times, BCS does not (supercond.) 

Wavefunction along the winding
                      path 
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The same applies to the nodes of 
temperature/imaginary time density matrix

Analogous argument applies to temperature density matrix

fix            ->  nodes/cells  in the       subspace

At high (classical) temperatures 
 

It is not too difficult to prove that at classical temperatures
R and R' subspaces have only two nodal cells: it is stunning 
since there is a summation over the whole spectrum!

PRL, 96, 240402 /cond-mat/0601485 (the basic ideas)
cond-mat/0605550  (all the models, density matrix) 

R , R ' ,=CN det {exp [−r i−r ' j
2 /2]}

R , R ' ,=∑
exp [−E]∗R R '

R ', R
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Two nodal cells: generic property, possible 
counterexamples

Also, how about the exact shape of the node ?

Topology of the nodes closed-shell ground states is  
surprisingly simple:

  The ground state node bisects the configuration space
 (the most economic way to satisfy the antisymmetry)

Possible exceptions:
                       - nonlocal interactions, strong interactions 
                       - impose more symmetries or boundaries 
                       - large degeneracies
      
 But the exact shape very difficult to get
     - mostly through wavefunction improvement methods
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Beyond sing particle ornitals: singlet pair orbital 
Bardeen-Cooper-Schrieffer  (BCS) wavefunction

- used to describe supeconductivity or BEC,  Sorella et al for
  electronic structure, '04 
  antisymmetized product of singlet pair orbitals          

  
 - spin-polarized case:                while

      where             are one-particle orbitals (usually HF) 
 
-  fully spin-polarized state trivially recovers Hartree-Fock    

BCS=A [1, n ...n , 2 n×h12 n1... ho2 no]
N=no

i , j

N=n

hk i

BCS=A [ i , j]=det [ i , j]

BCS=A [h i  j]=det [h i  j]=HF
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Beyond Slater determinants: pfaffian pairing 
wavefunctions contain both singlet and triplet pairs -> 

all spin states treated consistently

   

-  pairing orbitals expanded in one-particle basis 
 

 
- unpaired        

 - expansion coefficients and the Jastrow correlation optimized 
   with respect to energy 

PF=pf [     

− T   

−T −T 0 ]× exp [Ucorr ]

i , j=∑
b[h ih j−h ih j]

i , j=∑≥
a[h ih jh ih j]

 i=∑
c h i
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Algebra of Determinants vs Pfaffians 

Determinant
● signed sum of all antisymmetric 
permutations of rows/collums
● square matrix N×N
● for N=2
 
 

● expansion by minors
● for any square matrix B
 

Pfaffian
● signed sum of all antisymmetric 
perm. of pairs of elements 
● skew-symmetric matrix (N=2n)
 

 

● expansion by pfaffian minors 
● for any skew-symetric matrix A

det [a11 a12

a21 a22
]=a11 a22−a21 a12

det A=[pf A ]2

pf [ 0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0
]=

det B=−1n n−1/2 pf [ 0 B
−BT 0 ]

=[a12 a34−a13 a24a14 a23]
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Correlation energies of first row atoms and dimers 
Correlation from singlet vs triplet pairing 
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Multi-pfaffian wavefunctions for first row atoms: 
FNDMC ~98-99 % of correlation with a few pfaffians!

Table of % of correlation energies recovered for CI vs MPF w.f.
    - n denotes the number of dets/pfs in the expansion       

 

- number of pfaffians n
                        - subject to symmetry constraints 
                        - in principle all distinct pairs could be included

M. Bajdich et al, PRL 96, 130201 (2006)
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3D scan of the oxygen atom node by 2e- singlet: 
Topologies of different wfs (fixed-node DMC Ecorr)

    HF (94.0(2)%)        MPF (97.4(1)%)   CI (99.8(3)%)
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Observations from comparison  of HF and “exact” 
nodes

- the two nodal cells for
  Coulomb interactions as well

- the nodal openings have rather            HF
  fine structure

- openings are important -> 
~ 5% of the correlation energy

- although topologically incorrect, 
   away from openings HF nodes            CI
   unexpectedly close to exact
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Summary

-  explicit proof that, in general, fermionic ground states and 
   density matrices have two nodal cells for d>1 and for any size - 
   fundamental property of fermionic systems

-  nodal openings in correlated wave functions and exact nodal 
   shape important: 5 % of correlation energy, necessary condition
   for superconductivity; pfaffians pairing wfs very efficient 

- counterexamples: multiple cells can be genuine, eg, from
  singular or nonlocal interactions, boundary conditions, 
  possibly by large degeneracies, etc

- fermion nodes: another example of importance of quantum
  geometry (field theory) and topology for electronic structure
                            


