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What are the questions?

• What are the statistics of estimates in QMC?

• Is the statistical error kept under control?

• Can better estimates be made?

• What influence does the nodal surface have on all this?

Here VMC and variance minimisation is examined analytically, and numerically for an isolated C atom.

Answered in three sections:

1 - Statistical analysis of ‘standard sampling’ VMC

2 - A new ‘residual sampling’ strategy, and an analysis of its statistics

3 - Statistical analysis of variance minimisation for both standard sampling and residual sampling
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1 - Standard VMC

Basic equation of MC:
∫

V
fdR ≈ V f ± V ǫ[f ], P (R) = 1/V (1)

For estimate of operator f̂ (f = f̂ψ
ψ

) using unormalised many-body trial wavefunction ψ2(R)

〈f〉 ≈ ψ2f

ψ2
± ǫ

[

ψ2f, ψ2
]

, P (R) = 1/V (2)

Using importance sampling and assuming the CLT is valid:

≈ f ± ǫ [f ] , P (R) = λψ2 (3)

≈ f ±
√

Var[f ]

r
(4)

• Importance sampling with ψ2 makes the equations simple. Is it the best choice?

• Does the CLT hold? For r finite samples what replaces it?

• At the nodal surface ψ2 → 0 and EL → ±∞. This may be bad sampling for f = f(EL)
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3N-d distribution → 1-d distribution

Why?: Easier to deal with the general case analytically.

A change of the random variable from spatial to energy:

〈EL〉 =
∫

V
ψ2ELdR (5)

=
∫ ∞

−∞
Pψ2(E)EdE (6)

with

Pψ2(E) =
∫

E=EL

P (R)

|∇REL|
d3N−1

R (7)

• A histogram of EL approximates the ‘seed’ distribution Pψ2

• |∇REL| results from curvilinear co-ordinates and change of variables.

• Useless numerically, but useful analytically.
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Form of Pψ2 and singularities in EL = TL + VL

3 types for electron+atomic nuclei problems:

1 - singularity in nuclear potential part of VL not cancelled by singularity in TL

2 - singularity in e-e potential not cancelled by singularity in TL

3 - singularity in TL due to zeroes in ψ(R)

1&2 can be prevented by enforcing correct cusp conditions on ψ2, 3 cannot.

Type 3 only

Introduce new co-ordinates R = X + S⊥n̂ for expansion about nodal surface:

• X vector to nodal surface, S⊥ distance ⊥ to nodal surface

ψ2(R) = a2(X)S2
⊥ + a3(X)S3

⊥ + . . . (8)

EL(R + S⊥n̂) − E0 = b−1(X)S−1
⊥ + b0(X) + b1(X)S⊥ + . . . (9)

⇒

Pψ2(E) =
1

(E − E0)4

(

e0 +
e1

(E − E0)
+ . . .

)

(10)

E−4 (‘leptokurtotic’ or ‘fat’) tails are general to any trial wavefunction with Type 3 singularities only.
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Type 3 singularities only

All-electron Carbon. Trial wavefunction is multideterminant+jastrow+backflow.

E − E0/(a.u.)
-5 0 5

10−4

10−2

100

Estimated seed probability distribution

General asymptotic form is:

lim
|E|→∞

Pψ2(E) = c3E
−4 E → ±∞ (11)

Also shown are Pψ2 =
√

2
π

σ3

σ4+(E−E0)4
, and Gaussian with E0 and σ the mean and standard

deviation of sampled EL.
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Type 2 singularities only

All-electron C. Trial wavefunction is HF determinant.

E − E0/(a.u.)
-50 0 50

10−4

10−2

100

Estimated seed probability distribution

General asymptotic form is:

lim
|E|→∞

Pψ2(E) =











c2E
−4 E → +∞

0 E → −∞
(12)
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Type 1 & Type 2 singularities

All-electron C. Trial wavefunction is HF determinant with Gaussian basis.

E − E0/(a.u.)
-50 0 50

10−4

10−2

100

Estimated seed probability distribution

General asymptotic form is:

lim
|E|→∞

Pψ2(E) =











c2E
−4 E → +∞

c1E
−4 E → −∞

(13)
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The Central Limit theorem - summary

Consider a distribution, p(x), mean 0

CLT is derived by finding the distribution of the sum of r x’s sampled from p(x):

sr = x1 + . . .+ xr (14)

The distribution of sr is given by the convolution relations

Pr(sr) = p(x) ⋆ Pr−1(sr−1) (15)

Taking the fourier transform of this gives

Pr(k) = p(k)r = er ln p(k) (16)
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IF p(k) is continuous at k = 0 THEN

• Taylor expansion of ln p(k) (cumulant expansion)

• Factor out largest term in Pr(k)

• Expand the smaller factor as series, and FT back:

Pr(ρ) =
1√
2π
e−ρ

2/2

[

1 +
p1(ρ)√
r

+ . . .

]

(17)

with each pn(ρ) a polynomial in ρ - a Gram-Charlier expansion.∗

• As r → ∞ Pr(ρ) approaches a Normal distribution.

• Deviations from the normal distribution for finite r decay away exponentially in ρ

• Deviations from the normal distribution for finite r decay away as 1/r1/2

∗ ρ =
√

r

σ

(

E − µ
)
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BUT, a general property of fourier transforms is

FT (18)

p(x)|x→±∞ ∼ 1/|x|q −→ p(k)|k→±0 ∼ |k|q−1 (19)

For our trial wavefunctions the seed distribution Pψ2(E) ∼ 1/E4

This means there is |k|3 discontinuity in the FT of Pψ2(E), so no cumulant or Gram-Charlier expan-

sion is possible.
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CLT for total energy estimate

Rescale energy variables so ‘seed’ distribution has mean 0 and variance 1, Pψ2(E) → p(x).

sr = x1 + . . .+ xr (20)

distribution given by convolution

Pr(sr) = p(x) ⋆ Pr−1(sr−1) , Pr(k) = p(k)r = er ln p(k) (21)

p(k) can be expanded about k = 0 as

Pr(k) = exp

[

−r1
2
k2 + r

λ

3
√

2
|k|3 + . . .

]

(22)

with λ a measure of the magnitude of the E−4 tails, and not related to the mean or average of Pψ2(E).

TTI Page 12



TTI

Factoring, series expansion of smaller factor, and inverse transformation gives∗

Pr(ρ) = φ0(ρ) +
λ

3
√

2r
φ1(ρ) + . . . (23)

• φ0(ρ) = 1√
2π
e−ρ

2/2, with mean and variance as before

• limρ→±∞ Pr(ρ) =
√

2
r

1
π
λ
ρ4

• CLT is valid.

• Deviations from the normal distribution for finite r decay away as 1/ρ4.

∗ ρ =
√

r

σ

(

E − E0

)

TTI Page 13



TTI

Total energy estimate for finite r ?

ρ

P
r
(ρ

)

-10 -5 0 5 10
10−6

10−4

10−2

100

λ=10

λ=1

λ=0.1

Distribution of errors in the total energy estimate - r = 105

• Crossover between Gaussian and 1/ρ4 occurs at ρ2
c ≈ ln πr

4λ2

• For λ = 1, r > 103 then confidence of < 99.99% is CLT

• For λ > 10, r > 103 then finite r effects lower confidence

• Depends weakly on r/λ2, with λ an unknown property of the trial wavefunction.

• For all cases probability of an outlier does not decrease exponentially, but much slower.
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CLT for variance of the local energy

Same strategy as before, but sum of x2 − 1:

Rescale energy variables to u = x2 − 1 and p(u) → 1/u5/2 as u→ ∞
Find the distribution of the sum of r u’s sampled from p(u):

sr = x2
1 + . . .+ x2

r − r = u1 + . . .+ ur (24)

distribution given by convolution

Pr(sr) = p(u) ⋆ Pr−1(sr−1) , Pr(k) = p(k)r = er ln p(k) (25)

and expansion about k = 0

Pr(k) = exp

[

−r 4λ

3π1/2
(1 ∓ i)|k|3/2 + rk2 + . . .

]

(26)
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Factoring, series expansion of smaller factor, and inverse transformation gives∗

Pr(v) =

√
3

π

1

2γ

[

v − σ2

2γ

]2

exp





[

v − σ2

2γ

]3




×


−sgn
[

v − σ2
]

K1/3





∣

∣

∣

∣

∣

v − σ2

2γ

∣

∣

∣

∣

∣

3


+K2/3





∣

∣

∣

∣

∣

v − σ2

2γ

∣

∣

∣

∣

∣

3






 (27)

with the ‘width’ of the distribution decided by the magnitude of the tails

γ =

[

6λ2

πr

]1/3

σ2 (28)

• Not a normal distribution in the limit r → ∞
• γ is not related to moments of seed distribution

∗ v = Var[EL]
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φ0

φ0 + 1/r1/3φ1

(v − σ2)/(2γ)

γ
P
r
(v

)

-2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

Distribution of errors in the variance estimate - r = 103

• CLT is not valid (variance is infinite). Law of large number (LLN).

• A sample is most likely to be below mean, and outliers are very likely.

• Outlier probablility falls of as 1/v5/2, and not exponentially.

• Confidence limits defined via CLT are not valid. A new definition needs λ, and will scale as r−1/3
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4th moment, µ4?

Same strategy as before, but sum of x4

Obtain distribution of u = x4 − 1

• Pr(k) ∼ exp[−ark3/4 + . . .]

• Pr(µ4) ≍ r1/4/µ
7/4
4

• Pr(µ4) gets wider as r increases

• Pr(µ4) has infinite mean and variance

• neither CLT or LLN are valid → no statistical convergence
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Conclusion

• CLT applies to energy estimate for large enough r.

• Outliers are not exponentially unlikely for r <∞.

• CLT does not apply to variance estimates as r increases. LLN does.

• Neither LLN or CLT apply to higher moments than the variance.

• Error in the variance estimate are unknown (unless we stop being rigorous), but does go to zero.
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2. ‘Residual Sampling’ - can the CLT be reinstated?

Use importance sampling with a different sampling distribution - not ψ2

〈f(EL)〉 ≈
w(EL)f(EL)

w(EL)
± ǫ [wf,w] , P (R) = λψ2/w(EL) (29)

choose

w =
ǫ2

(EL − E0)2 + ǫ2
(30)

Why?:

• P (R) is now non-zero and smooth over the nodal surface.

• ǫ→ ∞ gives standard sampling.

• Estimate of error is different - ratio of two random variables.

• Sample from P (R) with Metropolis
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Error from the Bivariate CLT

Define µ2 = wf and µ1 = w

The pair µ2, µ1 from r samples is a 2d random vector sampled from the distribution

Pr(µ2, µ1) =
1

2π

1
√

c11c22 − c212

e−q
2/2 (31)

q2 =
1

c11c22 − c212

[

c22 (µ1 − µ1)
2 − 2c12 (µ1 − µ1) (µ2 − µ2) + c11 (µ2 − µ2)

2
]

(32)

and

c22 =
1

r
(wf − µ2)2

c12 =
1

r
(wf − µ2)(w − µ1)

c11 =
1

r
(w − µ1)2 (33)

f = EL gives distribution of numerator/denominator for total energy estmate wEL/w

f = (EL − µ2/µ1)
2 gives distribution of numerator/denominator for residual variance estimate.

All co-moments exist → CLT is valid, and tails are exponential
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Confidence limits

µ1

µ
2

0.9995 1 1.0005
-37.86

-37.84

-37.82

Confidence ellipse and confidence wedge

Get confidence limits using Fieller’s theorem. Confidence range of µ2/µ1 is (ll, lu) with

lu/l =
(µ1.µ2 − q2

0c12) ±
√

(µ1.µ2 − q2
0c12)

2 − (µ1
2 − q2

0c11) (µ2
2 − q2

0c22)

µ1
2 − q2

0c11

(34)

and q0 =
√

2erf−1(c) defining confidence of c in the estimate of µ2/µ1.

• The CLT is now valid for any f(EL)
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Estimate of total energy

Er=1000

-37.86 -37.84 -37.82
0

25

50

Histogram of 103 total energy estimates, each total energy estimate from 103 configurations.

• Residual sampling and standard sampling are not significantly different
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Estimate of error in total energy

r

l u
−
l l

103 104 105 106
10−4

10−3

10−2

10−1

Size of confidence interval estimated using CLT for standard, Fieller’s theorm for residual sampling.

• Residual sampling and standard sampling are not significantly different

• For both error ∼ 1/r1/2
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Estimate of variance of local energy

Varδ2 ,r=1000

0 0.05 0.1 0.15 0.2 0.25

1000

100

10

1

0.1

Histogram of 103 variance estimates, each variance estimate from 103 configurations.

• Residual sampling and standard sampling are very different

• Standard sampling shows the [Var]−5/2 tails and outliers expected

• Residual sampling gives well defined confidence limits from the co-moments and bivariate CLT.

• Standard sampling does not.
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Estimate error in variance of local energy

r

l u
−
l l

103 104 105 106
10−4

10−3

10−2

10−1

Size of confidence interval estimated using CLT expression for standard, and Fieller’s theorm for

residual sampling.

• Residual sampling and standard sampling are very different

• Standard sampling error ∼ 1/r1/3 and random noise. Error estimate is not valid.

• Residual sampling error ∼ 1/r1/2. Error is valid.

• Residual sampling gives well defined confidence limits from the co-moments and bivrariate CLT.

• Standard sampling does not.

The difference is near the nodal hypersurface
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Conclusions

• If we want to reintroduce the CLT, and remove the persistent x−q tails in the distribution of estimates,

then we can, using residual sampling.

• For the variance this interpolates between sampling the numerator perfectly, and sampling the

denominator perfectly.

• Residual sampling gives us well defined confidence limits for the variance in terms of the moments,

while standard sampling does not.

• Residual sampling adds 2 new parameters (E0 and ǫ) but is not sensitive to them. They can be

optimised.
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3. Variance minimisation and Correlated sampling

• Sample using distribution P (α0), with α0 a parameters of the trial wavefunction

• Choose a quantity whose minimum we wish to find, eg total energy:

O(α) =

〈

P (α)

P (α0)
EL(α)

〉

Pα0

/

〈

P (α)

P (α0)

〉

Pα0

= 〈f2(α, α0)〉 / 〈f1(α, α0)〉 (35)

Expand the averaged quantity in the numerator and denominator as a taylor series, and taking nu-

merical averages gives

O(α) =
f2(α, α0)

f1(α, α0)
=
f2(α0) + f ′

2(α0)(α− α0) + . . .

f1(α0) + f ′
1(α0)(α− α0) + . . .

(36)

• What is the statistical error in this estimate of O(α)?

Analyse statistics of each coefficient seperately:

• Does it converge to a constant as r → ∞?

• Does it obey the CLT?
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Example: O(α) = total energy, standard sampling

X = vector to nodal surface, n̂ = vector ⊥ nodal surface at X, S⊥ = distance ⊥ to nodal surface

P (R;α) = a2(X;α) (S⊥ − S0(X;α))2 + . . . (37)

EL(R;α) − E0(α) = b−1(X;α) (S⊥ − S0(X;α))−1 + . . .

f
(n)
2 (R) =

1

P (R;α0)

dn

dαn
[P (R;α)EL(R;α)]α0

f
(n)
1 (R) =

1

P (R;α0)

dn

dαn
[P (R;α)]α0

• For each coefficient f
(n)
1/2 transform to a 1-D distribution, with the new random variable x = f

(n)
1/2(R)

• This is done by integrating over f
(n)
1/2(R) = x hypersurface, as for VMC analysis.

• We get the asymptotic tails of the distribution p(x) whose average is f
(n)
1/2
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Limit theorems for sample average of p(x) ≍ |x|−q

q Limit theorem

3 < q CLT

2 < q ≤ 3 LLN

1 < q ≤ 2 No statistical limit

q ≤ 1 Not a PDF

• The distribution of the numerator or denominator is the fattest distribution of all the coefficents (for

α 6= α0)

• The distribution of the num./den. is bivariate CLT if all coefficients are CLT.

• The distribution of the num./den. is bivariate LLN if all coefficients are CLT or LLN

• The distribution of the num./den. does not converge if any coefficient is not CLT or LLN.
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Standard sampling - P = λψ2
α0

Numerator Denominator Stat. of O(α)

Optimate n = 0 n = 1 n > 1 n = 0 n = 1 n > 1

Energy reweighted CLT LLN LLN CLT CLT LLN bivariate LLN

Variance reweighted LLN LLN LLN CLT CLT LLN bivariate LLN

unweighted LLN × × exact ×
limited reweight LLN × × CLT CLT CLT ×
artificial weight CLT CLT CLT CLT CLT CLT bivariate CLT

reweighted : O(α) =
〈

ψ2

ψ2
α0

(EL − 〈EL〉)2

〉

/
〈

ψ2

ψ2
α0

〉

unweighted : O(α, α0) = 〈(EL − 〈EL〉)2〉
limited reweight : As reweighting, with a maximum P/P (α0) enforced

artificial weight : O(α, α0) = 〈h(EL)(EL − 〈EL〉)2〉 / 〈h(EL)〉 with h(EL) ≍ Gaussian in EL
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Residual sampling - P = λψ2
α0
/w(α0)

Numerator Denominator Stat. of O(α)

Optimate n = 0 n = 1 n > 1 n = 0 n = 1 n > 1

Energy reweighted CLT CLT CLT CLT CLT CLT bivariate CLT

Res. Variance reweighted CLT CLT CLT CLT CLT CLT bivariate CLT

unweighted × × × exact ×
limited reweight × × × CLT CLT CLT ×
artificial weight CLT CLT CLT CLT CLT CLT bivariate CLT

reweighted : O(α) =
〈

ψ2

ψ2
α0

w(α0)(EL − 〈EL〉)2

〉

/
〈

ψ2

ψ2
α0

w(α0)
〉

unweighted : O(α, α0) = 〈(EL − 〈EL〉)2〉
limited reweight : As reweighting, with a maximum P/P (α0) enforced

artificial weight : O(α, α0) = 〈h(EL)(EL − 〈EL〉)2〉 / 〈h(EL)〉 with h(EL) ≍ Gaussian in EL
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Estimated O(α)

r = 105 configurations for each of 8 O(α)’s

Estimate of variance using reweighting

Variance estimated with Standard sampling

α

V
ar

-0.1 -0.075 -0.05 -0.025

0.052

0.054

0.056

0.058

Variance estimated with Residual sampling

α

V
ar
δ
2

-0.1 -0.075 -0.05 -0.025

0.052

0.054

0.056

0.058

• Standard sampling to generate O(α) is distributed via LLN

• Residual sampling to generate O(α) is distributed via CLT

• Residual sampling provides the best estimate to O(α)
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Optimisation

r = 105 configurations.

Total energy

no. cycle.

E
to
t/

(a
.u
.)

1 2 3 4 5

-37.84

-37.83

-37.82

↓ Std.

↑ Res.

Eexp

Residual variance

no. cycle.

V
ar
δ
2

1 2 3 4 5
0

0.05

0.1

↓ Std.

↑ Res.

Std. - artificial weights and samples using ψ(α0)
2

Res. - reweighting and samples using ψ(α0)
2/w(α0)

• The standard method starts with jastrow/multidet. optimised, backflow parameters set to zero

• The residual method starts with jastrow/backflow/multdeterminant parameters set to zero

• Optimisation using reweighting and residual sampling provides a lower energy and variance than

standard sampling with artifical weights.
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Conclusions

• For standard VMC we cannot assume that CLT and ‘r is large enough’ apply. Many of the estimates

are not distributed as CLT for r → ∞.

• A new sampling ‘Residual Sampling’ with a distribution that is non-zero at the nodal hypersurface

reintroduces the CLT for all estimates.

• Optimisation for standard sampling finds the minimum of O(α). This is not distributed as CLT,

unless the nodal surface is removed from sampling (using artificial weights).

• Optimisation for residual sampling finds the minimum of O(α). This is distributed as CLT, with

sampling taking place at the nodal surface.

• Optimisation with residual sampling gives the lowest total energy and variance of the local energy,

and the lowest statistical error.
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