QMC dissociation energy of the water dimer: Time step errors and backflow calculations

Idoia G. de Gurtubay and Richard J. Needs

TCM group. Cavendish Laboratory

University of Cambridge

Introduction

Water

Introduction

- This work
- Results. Monomer
- Results. Dimer
- Conclusions

Physical and chemical properties: strong polar hydrogen bonds

Introduction

Water

Introduction

- This work
- Results. Monomer
- Results. Dimer
- Conclusions

Physical and chemical properties: strong polar hydrogen bonds

Binding energy of only a few kcal/mol

Introduction

Water

Introduction

- This work
- Results. Monomer
- Results. Dimer
- Conclusions

Physical and chemical properties: strong polar hydrogen bonds

 $\blacksquare \text{ Monomer } \longrightarrow \text{ Dimer } \longrightarrow \text{ Trimer } \longrightarrow \cdots \longrightarrow \text{ Bulk water}$

Binding energy of only a few kcal/mol

DIMER: prototype of all hydrogen-bonded systems

Previous calculations on H_2O and (H_2O)_2

MP2, CCSD(T), CI

- Introduction
- This work
- Results. Monomer
- Results. Dimer
- Conclusions

- + correlation effects quite accurate
- basis set truncation errors
- basis set superposition errors
- N^5 , N^7

Previous calculations on H_2O and (H_2O)_2

MP2, CCSD(T), CI

- + correlation effects quite accurate
 - basis set truncation errors
 - basis set superposition errors
 - N^5 , N^7
- Density functional theory (DFT)
 - + More favorable scaling
 - Strong dependence on the XC functional

This work

- Results. Monomer
- Results. Dimer

Introduction

This work on H_2O and $(H_2O)_2$

Quantum Monte Carlo

- Introduction
- This work
- Results. Monomer
- Results. Dimer
- Conclusions

- + electronic correlation explicitly
- + Scales as N^3

This work on H_2O and $(H_2O)_2$

Quantum Monte Carlo

Introduction

- This work
- Results. Monomer
- Results. Dimer
- Conclusions

- + electronic correlation explicitly
- + Scales as N^3

THIS WORK

- \implies VMC and DMC Energies of H₂O and (H₂O)₂
 - All-electron (AE) and Pseudopotential (PP) calculations
 - Slater-Jastrow (SJ) and Slater-Jastrow-Backflow (BF) wave functions
- \implies Electronic dissociation energy of (H₂O)₂

VMC, DMC

VMC

Introduction

This work

- Results. Monomer
- Results. Dimer
- Conclusions

Accuracy determined by the trial wave function

- biased energy differences
- for optmizing parameters of the wave function

DMC

- Project out the ground state component of the trial wave function
- Fermionic symmetry: fixed node approximation

CASINO code

Trial wave function

Slater-Jastrow (SJ) wave function

$$\Psi^{\rm SJ}(\mathbf{R}) = e^{J(\mathbf{R})} \Psi_{\rm S}(\mathbf{R})$$

Introduction

This work

- Results. Monomer
- Results. Dimer
- Conclusions

- $R=\{r_i\}$
- Jastrow factor: $e^{J(\mathbf{R})}$
- Slater determinant: $\Psi_{\rm S} = D_{\uparrow} D_{\downarrow}$

Trial wave function

Slater-Jastrow (SJ) wave function

$$\Psi^{\rm SJ}(\mathbf{R}) = e^{J(\mathbf{R})} \Psi_{\rm S}(\mathbf{R})$$

- Introduction
- This work
- Results. Monomer
- Results. DimerConclusions

- $R=\{r_i\}$
- Jastrow factor: $e^{J(\mathbf{R})}$
- Slater determinant: $\Psi_{\rm S} = D_{\uparrow} D_{\downarrow}$

Slater-Jastrow-Backflow (BF) wave function

$$\Psi^{\rm BF}(\mathbf{X}) = e^{J(\mathbf{R})} \Psi_{\rm S}(\mathbf{X})$$

$$\mathbf{x}_i = \mathbf{r}_i + \xi_i(\mathbf{R})$$

• Backflow displacement: $\xi_i(\mathbf{R})$ [PLR: 24/07, 9:30am]

Single particle orbitals

CRYSTAL98 code

Introduction

- This work
- Results. Monomer
- Results. Dimer
- Conclusions

- Basis set: Roos augmented double zeta ANO (s, p, d)
- B3LYP orbitals seem to give better nodes than Hartree-Fock orbitals

 → use parameters in XC functional to optimise orbitals

CRYSTAL98 code

Introduction

This work

- Results. Monomer
- Results. Dimer
- Conclusions

Basis set: Roos augmented double zeta ANO (s, p, d)

B3LYP orbitals seem to give better nodes than Hartree-Fock orbitals
 → use parameters in XC functional to optimise orbitals

 $E_{\rm xc} = (1-A)(E_x^{\rm LDA} + B E_{\rm x}^{\rm Becke}) + A E_{\rm x}^{\rm HF} + (1-C) E_{\rm c}^{\rm VWN} + C E_{\rm c}^{\rm LYP}$

- *A* : Fock exchange
- *B* : non-local exchange
- C : non-local correlation

True B3LYP $\rightarrow A = 0.2$, B = 0.9 and C = 0.81

B3LYP orbitals

Introduction

This work

- Results. Monomer
- Results. Dimer
- Conclusions

$$E_{\rm xc} = (1 - A)(E_x^{\rm LDA} + B E_{\rm x}^{\rm Becke}) + A E_{\rm x}^{\rm HF} + (1 - C) E_{\rm c}^{\rm VWN} + C E_{\rm c}^{\rm LYP}$$

$$A = 1 \implies \mathsf{E}_{\mathrm{DMC}} = -76.4218(1) \text{ Ha}$$

HF $\implies \mathsf{E}_{\mathrm{DMC}} = -76.42205(8) \text{ Ha}$

Exchange is the most important contribution

 \implies Use A as optimisable parameter keeping B and C constant

B3LYP-25 orbitals

Introduction

This work

- Results. Monomer
- Results. Dimer
- Conclusions

Summary of details

SJ and BF trial wave functions

Introduction

- This work
- Results. Monomer
- Results. Dimer
- Conclusions

- J/BF parameters: minimize variance of local energy
- B3LYP-25 single-particle orbitals
- AE: single-particle orbitals corrected → obey cusp conditions
- PP: From Hartree-Fock theory
 - work well with QMC
 - avoid short-range variations of the wavefunction near the nuclei
 larger time steps
- Various time steps + extrapolation to zero time

Geometries

Monomer: experimental equilibrium geometry

Introduction

This work

- Results. Monomer
- Results. Dimer
- Conclusions

 $r_{OH} = r_{OH'} = 0.9572$ Å ∠ = 104.52°

Geometries

$r_{\rm OH} = r_{\rm OH'} = 0.9572$ Å $\angle = 104.52^{\circ}$

Dimer: CCSD(T) geometry (Klopper et. al)

Introduction

This work

- Results. Monomer
- Results. Dimer

Geometries

Monomer: experimental equilibrium geometry

Introduction

This work

- Results. Monomer
- Results. Dimer
- Conclusions

- Introduction
- This work
- Results. Monomer
- Results. Dimer
- Conclusions

H_2O , extrapolation to zero time

-76.4230 -76.4235 € • 🔁 • -76.4240 -76.4245 * 🔁. -76.4250 (Ha) -76.4255 SJ -76.4260 O -76.4265 -76.4265 -76.4270 -76.4275 -76.4280 -76.4285 П BF -76.4290 -76.4295 -76.4300 -76.4305 -76.4310 0.002 0.004 0.012 0.008 0.01 0.006 () Time step (au)

Introduction

This work

Results. Monomer

Results. Dimer

Water dimer

Ha

- Introduction
- This work
- Results. Monomer
- Results. Dimer
- Conclusions

Pseudopotential calculations

Introduction

This work

Results. Monomer

Results. Dimer

Pseudopotential calculations

Introduction

This work

Results. Monomer

Results. Dimer

Pseudopotential calculations

Introduction

This work

Results. Monomer

Results. Dimer

All-electron calculations

Introduction

This work

Results. Monomer

Results. Dimer

All-electron calculations

Introduction

This work

Results. Monomer

Results. Dimer

Dissociation energy (D_e)

5.7 5.6 5.5 5.4 5.3 h (kcal/mol) **PP-BF** `⊈_{` AE-SJ} ${}^{_{e}}D$ 5 4.9 **PP-SJ** 4.8 0.01 0.02 0.03 0.04 0 0.05 Time step (au)

Method	D_e (kcal/mol)
AE-SJ	5.23(11)
PP-SJ	5.03(7)
PP-BF	5.43(10)

Dissociation energy (D_e)

Conclusions

Introduction

Conclusions

• AE and PP total energies of H_2O and $(H_2O)_2$

- Introduction
- This work
- Results. Monomer
- Results. Dimer
- Conclusions

SJ and BF wave functions with B3LYP-like single-particle orbitals

Conclusions

- AE and PP total energies of H_2O and $(H_2O)_2$
- SJ and BF wave functions with B3LYP-like single-particle orbitals
- Water monomer
 - B3LYP-like orbitals lower the H₂O DMC energy ~1.5 mHa compared to HF orbitals
 - \rightarrow better nodal surface
 - BF correlations reduce the DMC energy by an additional 4-5 mHa
 - E = -76.42792(15) Ha (10 mHa above exact value)

Introduction

Conclusions

Results. Monomer
 Results. Dimer

This work

Conclusions

- AE and PP total energies of H_2O and $(H_2O)_2$
- SJ and BF wave functions with B3LYP-like single-particle orbitals
- Water monomer
 - B3LYP-like orbitals lower the H₂O DMC energy ~1.5 mHa compared to HF orbitals
 - \rightarrow better nodal surface
 - BF correlations reduce the DMC energy by an additional 4-5 mHa
 - E = -76.42792(15) Ha (10 mHa above exact value)
- D_e of water dimer
 - Time step errors cancel
 - Extrapolated D_e for AE and PP with SJ and BF wave functions within error bars of "exact" value

Introduction

Conclusions

Results. Monomer
 Results. Dimer

This work

Acknowledgments...

IntroductionThis work

Results. Monomer

Results. Dimer

Conclusions

Financial support from the Basque Government through Research Fellowship BFI 04/183

Calculations were performed at the Cambridge-Cranfield High Performance Computing Facility