

The Equation of State of Diamond

Andrea Ma

26th July 2006

with R. Maezono, N.D. Drummond, M. Towler and R. J. Needs

- Introduction
- Equation of state
- Experiments
- DFT calculations
- QMC calculations
- Results

Introduction

- Aims with DFT and QMC, determine:
 - EOS parameters: the lattice constant, bulk modulus and the pressure derivative of the bulk modulus of diamond
 - Zone-centre optical phonon frequency (Raman frequency) of diamond

Why?

- Experimental disagreement in B_{o}'
- Raman frequency has a possible role in pressure calibration in diamond anvil cells
- Study carried out up to 500 GPa. Pressure currently achieved in diamond anvil cells is around 350 GPa.

Equation of state (EOS)

Pressure-volume or energy-volume relationship

- Useful in geo, planetary, solar and stellar physics
- Data consisting of pressure, temperature and volume are parameterized as a functional form.
- A correct form helps us predict the high-pressure properties of solids
- Many different proposed forms of EOSs:
 - Birch, Murnaghan, Dodson, Holzapfel, Vinet, Kumari-Dass, Parsafar-Mason...

$$E(V) = \frac{-4B_0V_0}{(B_0'-1)^2} \left[1 - \frac{3}{2} (B_0'-1) \left(1 - \left(\frac{V}{V_0}\right)^{1/3} \right) \right] \times \exp\left[\frac{3}{2} (B_0'-1) \left(1 - \left(\frac{V}{V_0}\right)^{1/3} \right) \right] + E_0$$

Parameters for an energy-volume EOS are

•
$$V_{0'}, B_{0'}, B_{0'}, E_{offset}$$

- The Vinet EOS gave the best fit to our data and yielded EOS parameters closest to experimental values.
- How accurate?
 - Vinet up to $V/V_0 = 0.2 \cdot 0.3$ (or 10 Tpa)⁽¹⁾

• Dodson, KD and Murnaghan up to $V/V_0=0.7$

(1) Hama et al., J. Phys.: Condens. Matter 8 67, (1996)

The Diamond Anvil Cell (DAC)

E The Diamond Anvil Cell

Top view onto an open Mao-Bell type DAC. The main components of the DAC are a long piston-cylinder assembly loaded with a lever arm.

- Typical sample size
 10-30 µm
- Fluid rare gas loaded as pressure-transmitting medium
- 5 µm size ruby sphere (calibration)
- Pressures up to 350GPa reached

E Difficulties in experiments

• Sample chamber becomes very thin (<10 μ m)

- Separation of diffraction signal of diamond from diamond anvils
- Pressure above 140GPa leads to breakage of diamond anvils in Occelli's experiment
- Calibration of the pressure (underestimates pressure by 11% in ruby calibration?)

Pressure derivative of the bulk modulus

Method

B₀'

Ultrasonic, up to 0.2GPa,

McSkimin and Andreatch (1972)

X-ray diffraction and Raman scattering, up to 140GPa,

F. Occelli, P. Loubeyre, and R. LeToullec (2003)

LDA

Fahy et al, Chelikowsky et al, Pavone et al, Kunc et al, Crain et al

GGA

Kunc et al, Ziambaras et al (4th order polynomial, Murnaghan, Birch) 3.0(1)

4.0(5)

3.5, 3.54, 3.5, 3.63(3), 4.22

3.67(3), 3.71, 3.72, 3.70

EXAMPLE OF THE CONTROL FOR A CONTROL FOR EOS

- Computational details:
 - Code: CASTEP (plane waves)
 - GGA (PBE) and LDA
 - Ultrasoft pseudopotentials
 - Energy cutoff 100 a.u. (converged to 5x10⁻⁵ a.u./atom)
 - 8x8x8 MP k-point grid (converged to within 1x10⁻⁵ a.u./atom)
- Calculate E(V) for pressures up to 500GPa

Choosing volume range for QMC

- Assume the energy-volume from PBE and QMC are similar
- In QMC we aim for a statistical error bar of 0.0001 a.u. per atom
- Add statistical noise to DFT data to study the effect of statistical noise on the EOS fitting parameters

Choosing volume range for QMC

QMC calculations for EOS (I)

- We expect our QMC calculations to give accurate results because:
 - Diamond is a material with a large band gap (5.47 eV), so a single Slater-determinant is expected to give a good nodal surface
 - Carbon has small non-polarisable core, therefore the pseudopotential approximation works well
 - HF pseudopotentials designed for QMC calculations

QMC calculations for EOS (II)

Computational details:

- calculations at 7 lattice constants around equilibrium, plus 3 lattice constants up to 500 GPa
- 4x4x4 and 5x5x5 supercells (128 atoms and 250 atoms)
- blip basis set⁽¹⁾
- HF pseudopotentials⁽²⁾
- Results corrected for finite-size effects and zero-point motion (from DFT-PBE calculations)

(1) Alfè et al, PRB 70, 161101 (2004)
(2) Trail and Needs, JCP 122 014112 (2005), JCP 122, 174109 (2005)

	DFT GGA (from lit.)	PBE	LDA	VMC	DMC	Expt
Lattice constant (Å)	3.55, 3.568, 3.565	3.577	3.536	3.555(1)	3.5737(8)	3.567, 3.5668
Bulk Modulus (Mbar)	4.33(2), 4.32, 4.22, 4.36, 4.32, 4.35	4.22	4.55	4.69(2)	4.38(1)	4.42, 4.43, 4.52, 4.448(8), 4.46(1), 4.45, 4.69 (at 0K)
Pressure deriv. of the bulk modulus	3.67(3), 3.71, 3.72, 3.70	3.75	3.68	4.38(1)	3.79(3)	4.0(5), 3.0(1)

Overview of phonon frequency calculations

Total energy calculations at a particular lattice constant, with the carbon atoms displaced in the (111) direction

 $E(0), E(u_1), E(u_2)$ 3 energies

> Account for up to 4th order terms with DFT

Fitting data to third order polynomial E(u)

Frozen phonon frequency

🗾 Frozen phonon frequencies (I)

Frozen phonon method

• Energy E(u) taken as a 3rd order polynomial:

$$E(u) = E(0) + A u^{2} + B u^{3}$$
harmonic phonon
frequency
$$\omega_{0} = \sqrt{\frac{A}{3M}}$$

$$a^{rd} \text{ order term}$$
Calculations at $E(0)$,
$$E(u_{1}) \text{ and } E(u_{2})$$

🗾 Frozen phonon frequencies (II)

- Calculated of 2nd and 3rd order coefficients (A and B) with PBE, LDA and QMC
- 4th order coefficients with PBE (involves displacements of the carbon atoms in the [100] and [110] directions)
- Vanderbilt⁽¹⁾ showed with perturbation theory:

$$\Delta E_{[100]}(u) = \kappa u^{2} + \alpha u^{4}$$
$$\Delta E_{[110]}(u) = \kappa u^{2} + \frac{1}{2}(\alpha + 3\beta)u^{4}$$
$$\Delta E_{[111]}(u) = \kappa u^{2} + \frac{2\gamma}{\sqrt{3}}u^{3} + \frac{1}{3}(\alpha + 6\beta)u^{4}$$

(1) Vanderbilt et I, PRL 53(15) 1477 (1984)

🗾 Frozen phonon frequencies (III)

 anharmonic term in the phonon frequency is given approximately by

$$\Delta \omega \approx \frac{3\hbar}{4M^2 \omega_0^2} (\alpha + 2\beta - \gamma^2 / 2\kappa)$$

- κ 2nd order coeff.
- γ 3rd order coeff.
- α , β 4th order coeff.
 - M Mass of carbon atom
 - ω_0 Harmonic phonon frequency

$$\omega = \omega_0 + \Delta \omega$$

Frozen phonon frequencies (IV)

To deduce coefficients up to 4th order:

$$\Delta E_{[100]}(u) = \kappa u^{2} + \alpha u^{4}$$

$$\Delta E_{[110]}(u) = \kappa u^{2} + \frac{1}{2}(\alpha + 3\beta)u^{4}$$

$$\Delta E_{[111]}(u) = \kappa u^{2} + \frac{2\gamma}{\sqrt{3}}u^{3} + \frac{1}{3}(\alpha + 6\beta)u^{4}$$

$$\kappa, \alpha$$

$$\Delta E_{[111]}(u) - \Delta E_{[111]}(-u) = \frac{4\gamma}{\sqrt{3}}u^{3}$$

$$\frac{\Delta E_{[110]}(u)}{u^{2}} = \kappa + \frac{1}{2}(\alpha + 3\beta)u^{2}$$

$$\kappa, (\alpha + 3\beta)$$

🔁 Determining coefficients (500 GPa)

Atomic displacements (I)

- Small atomic displacements in DFT
 - U = 0.001a, a = lattice constant:
 - Stretch and compress the carbon-carbon bond by the same amount
- How about atomic displacements in QMC?
 - Have to consider effects of statistical noise on QMC data (0.0001 a.u./atom)
 - Stretch and compress the carbon-carbon bond by the same amount, or not?
 - Aim for an error bar of <5cm⁻¹, and an anharmonicity of <1% of the phonon frequency

🧾 Atomic displacements (II)

E Final phonon frequencies

Extrapolation of experimental values

Extrapolation (a)

$$\omega(V) = \omega(V_{expt}) \left(\frac{V_{expt}}{V}\right)^{\gamma}$$

$$\gamma = 1$$

• Extrapolation (b)

$$\omega(V) = \omega(V_{expt}) \frac{\gamma}{\gamma'} \left[\left(\frac{V}{V_{expt}} \right)^{-\gamma'} - 1 \right] + \omega(V_{expt})$$

 $\gamma = 1.000(5)$, $\gamma' = 0.80$

Comparison with experiments

 Performed DFT and QMC calculations on carbon diamond to determine

- EOS parameters a, B_{0} and B_{0} ' up to 500 GPa
- Zone-center frozen phonon frequencies up to 300 Gpa
- DMC results for a and B_o agree within 0.2% and 2% of the experimental values respectively
- DMC determined value of $B_0' = 3.79(3)$ agrees with the earlier experimental result of $B_0' = 4.0(5)$ (McSkimin *et al.*)

- QMC finite size effects (I)
- QMC finite size effects (II)
- Parameters in anharmonic term
- DMC EOS parameters

QMC finite size effects (I)

- Coulomb finite size bias
- The static energy in the infinite system limit is given by: $E_{\infty}^{SL}(V) = E_{N}^{SL}(V) + \frac{b(V)}{N}$
- For two system sizes, we can eliminate b(V):

$$E_{\infty}^{SL}(V) = \frac{N E_{N}^{SL}(V) - M E_{M}^{SL}(V)}{N - M}$$

Parameters in anharmonic term

	4x4x4 supercell	5x5x5 supercell	Infinite cell size without ZPE	Infinite cell size	Expt
Lattice constant (Å)	3.5620(4)	3.5620(4)	3.5622(8)	3.5737(8)	3.567, 3.5668
Bulk Modulus (Mbar)	4.546(8)	3.522(8)	4.50(1)	4.38(1)	4.42, 4.43, 4.52, 4.448(8), 4.46(1), 4.45, 4.69 (at 0K)
Pressure deriv. of the bulk modulus	3.68(1)	3.73(2)	3.77(3)	3.79(3)	4.0(5), 3.0(1)