
In search of a breakdown
of quantum theory

Antony Valentini
Imperial College London

a.valentini@imperial.ac.uk



Quantum theory is a special case of a much wider physics



De Broglie’s Pilot-Wave Dynamics (1927)

Get QM if assume initial 

(shown fully by Bohm in 1952;
apply dynamics to apparatus)

(cf. Bell 1987)

de Broglie called it “pilot-wave theory”



Overall effect vanishes or “cancels out” in the special
state of “quantum equilibrium”, but not otherwise.

“Non-equilibrium particles” could be used to send nonlocal signals
(and to do “sub-quantum” measurements on ordinary particles)

(Valentini 1991, 2002)

Nonequilibrium superluminal signalling



Equilibrium changes with time

Non-equilibrium relaxes to equilibrium

(Valentini and Westman 2005)



Quantum theory is a special case of a much wider physics



But what about doing something similar in Bohm’s dynamics?

(Recent work with Samuel Colin and Ward Struyve.)



For Bohm,                     is an initial condition; can drop it.

For de Broglie,                    is the law of motion. 

Bohm’s Newtonian version (1952)

De Broglie’s dynamics and Bohm’s dynamics are different.

Get QM if assume initial                 and

“Bohmian mechanics” is a misnomer for de Broglie’s dynamics.

(law of motion)



QT

de Broglie

Bohm



Part A: Instability of quantum equilibrium
in Bohm’s dynamics

(Joint work with Samuel Colin and Ward Struyve)

1. Bohm’s dynamics allows “extended 
nonequilibrium”, with momenta p ≠ grad S

2. Extended nonequilibrium is unstable, does not 
relax in general

3. Argue that Bohm’s dynamics is untenable

(no reason to expect equilibrium today)



For Bohm,                     is an initial condition; can be relaxed.

Bohm’s dynamics (1952)

Get QM if assume initial                 and

Instability of quantum equilibrium
in Bohm’s dynamics

In phase space, the equilibrium distribution is 

multi-dimensional[ ]



Extended nonequilibrium in Bohm’s dynamics

(For simplicity, write as if one particle in 1D.)

Our answer:   they do not



Comparison with classical case

(No fixed energy surface in phase space.)

But we still have Liouville’s theorem, as for 
any Hamiltonian system:



Because dρ/dt = 0 , we have TWO 
equilibrium distributions:

(1) If ρ(x,p,0) = c (for some constant c) over the available 
region of phase space, then

ρ(x,p,t) = c

at all times t (the classical equilibrium distribution)

(2)  The quantum equilibrium distribution

(also conserved by Bohm’s dynamics)

This is unusual



Some comments and queries:

1. Will an arbitrary initial state relax to one of these equilibrium 
states? Or to neither? Might guess that the existence of two 
equilibrium measures will ‘confuse’ the system.

2. If we appeal to ‘typicality’ wrt to an equilibrium measure, 
which one should we choose?

3. Bohm’s dynamics is an unusual dynamical system. Beware of 
standard intuitions and expectations.



Our central claim (re. Bohm’s dynamics)

While more work can and should be done, we have 
gathered extensive evidence that:

(1) The quantum equilibrium state is unstable in Bohm’s
dynamics.

(2) There is no tendency to relax to quantum
equilibrium in Bohm’s dynamics. 

(3) If the universe started in a non-equilibrium state, we  
would (almost certainly) not see equilibrium today, and 
in particular there would be no bound states (atoms 
etc)



Instability of Bohm’s dynamics
A simple example

Ground state of a bound system.
E.g. a hydrogen atom, or a simple harmonic oscillator (SHO)

Contrast with de Broglie’s dynamics:

p = grad S = 0   ,    velocities vanish

Therefore, an initial small deviation from  
stays small (and indeed static).

For superpositions, initial small deviations relax away.



Whereas, in Bohm’s dynamics:

for a ground state,

– grad V – grad Q = 0   ,        accelerations vanish

Therefore, an initial small deviation of p from grad S (= 0)
remains small (and indeed static).
But: causes a GROWTH in non-equilibrium wrt position. 

Bound states become UNBOUND.

And for superpositions, do NOT get relaxation ... .



Instability is not an artifact of simple ground state.

More complex states, with superpositions , are also unstable.

Sketch of proof, for an example:

Superposition of energy states for a harmonic oscillator.

Find lower bound on acceleration, in some x-region

– grad V – grad Q > – b/x²   (some constant b)

implies escapes to infinity for some initial momenta
(cf. escape velocity from earth)

Non-equilibrium superpositions in Bohm’s dynamics



Numerical results for the hydrogen atom

Superposition of 3 energy eigenstates, (n,l,m) = (1,0,0), (2,1,1), (3,2,-1). 
Initial velocities close to those of de Broglie

Initial position: (0.5,0.5,0.5)
(Bohr radius = 1)

5 trajectories:

Black: de Broglie trajectory
Blue: Bohm trajectory with
initial de Broglie velocity
(Blue and black identical)
Green: close to dB velocity
Magenta: dB velocity +

(0.05,0.05,0.05)
Red: dB velocity + 

(0.1,0.1,0.1)





Our central claim (again)
More work can and should be done, but we have 
gathered extensive evidence that:

(1) The quantum equilibrium state is unstable in Bohm’s
dynamics.

(2) There is no tendency to relax to quantum
equilibrium in Bohm’s dynamics. 

(3) If the universe started in a non-equilibrium state, we  
would (almost certainly) not see equilibrium today, and 
in particular there would be no bound states (atoms 
etc)



Might claim that early universe will reach equilibrium long 
before atoms form (about 400,000 years after the big bang).

If so, would still form bound states.

Expect no bound states today?



Might claim that early universe will reach equilibrium long 
before atoms form (about 400,000 years after the big bang).

If so, would still form bound states.

But: early fields will show the same instability.

For example, a decoupled scalar field mode is mathematically 
the same as a 2D simple harmonic oscillator: 

Expect no bound states today?

Same as 2D SHO
with time-
dependent “mass”

and  



(de Broglie’s equations of motion. 
Initial equilibrium  conditions for Bohm)

Bohm’s dynamics for a (short-wavelength)
decoupled field mode:

Field amplitudes will show same instability
as found for low-energy particle case



Conclude: Bohm’s dynamics is untenable

Agrees with QT only if assume very special initial conditions.

The dynamics is unstable, and small deviations from initial 
equilibrium do not relax.

Small departures from equilibrium (e.g. In the remote past) 
would in fact grow with time.

If you believe in Bohm’s dynamics, it would be unreasonable 
to expect to see effective QT today, in contradiction with 
observation.

(Have found a breakdown of QT, but far too big.)



Possible responses:

1. Extended equilibrium is “absolute” (cf. DGZ in deB case). But: 
how justify one ‘typicality’ measure when there are two 
equilibrium distributions?
(And in any case, the measure does too much work.)

2. Bohm’s dynamics is only an approximation, corrections from a 
deeper theory will drive to equilibrium.

Perhaps, but: (a) fact remains that Bohm’s dynamics on its 
own is unstable and (we claim) untenable, and (b) the 
corrections will have to be large to overcome what seems
a gross instability.

Our view: Bohm’s pseudo-Newtonian reformulation of de Broglie’s 
dynamics was a mistake, and we ought to regard de Broglie’s 
original (1927) theory as the proper and bona fide theory.



Part B: Relic non-equilibrium
in de Broglie’s dynamics

Towards a prediction for a breakdown of QT
(Valentini: arXiv 2008, Phys. Rev. D 2010)

1. De Broglie’s dynamics allows non-equilibrium 
with configuration-distributions                 , which 
tend to relax to equilibrium  

2. But on expanding space: relaxation can be 
suppressed at long wavelengths

3. Update on work towards a precise prediction for 
relic non-equilibrium today (or in the CMB)



De Broglie’s Pilot-Wave Dynamics (1927)

Get QM if assume initial 



Equilibrium changes with time

Non-equilibrium relaxes to equilibrium

A long time ago (long and violent astrophysical history)



Key idea

Relaxation on expanding space

Can be suppressed at long wavelengths

(cf. freezing of classical perturbations)

For a given cosmology, if we assume initial 
nonequilibrium, we can deduce where
“residual nonequilibrium” can be found.



Pilot-wave field theory on expanding space
Flat metric

Hamiltonian density





Roughly:

Relaxation in the short-wavelength limit

Obtain usual efficient relaxation (decoupled mode)

(strictly,                                          )



But: relaxation can be suppressed at long wavelengths

Will now derive a rigorous condition for non-equilibrium freezing:

• arbitrary time interval

• any quantum state (entangled, mixed)

• interacting fields



Inequality for the freezing of quantum nonequilibrium

First: general (entangled) pure quantum state of a free field
(Generalise later to mixed, interacting.) 

(Valentini 2008)



Initial nonequilibrium distribution

Can relax (in general, on a coarse-grained level)

only if the trajectories move far enough
(Cf. gas molecules in a box)

Simple condition for “freezing”: 

(magnitude of final displacement smaller than width of wave packet)

Too strong. Take weaker condition

(equilibrium mean smaller than width of wave packet)

Implies that most of the ensemble cannot move

by much more than 

Final displacement



If                  

relaxation will in general be suppressed (for the mode kr )

Now:

(where                                                                           )

Or

We have
(*)



(Can use to estimate relaxation time, agrees with LOUIS for a = 1.)



Using

we have

Combine with previous

Have upper bound for the ratio

True for arbitrary entangled state 

“Freezing inequality”: right-hand side is less than one ... .



Freezing inequality

Mixed states:  
• Statistical mixture of physically-real pilot waves
• Consider freezing inequality for each pure subensemble separately
• Might hold for some subensembles and not for others

(or for all of them, or none)

Interacting fields:  
• Finite models with a cutoff (ignore divergences)
• Scalar       interacts with other fields 
• Only difference is in time evolution of 

“Frozen” nonequilibrium will exist at later times

for modes satisfying the inequality



General implication of the freezing inequality

Satisfied? Depends on history of expansion, 
and on time evolution of quantum state

or

(                                     )



Possible consequences of early nonequilibrium freezing

Write                                                        as         

(A necessary but not sufficient condition.)

Points to where nonequilibrium could be found.

We should search for nonequilibrium above a
specific critical wavelength

Two main areas of research (in progress)





Can set empirical limits on            (Valentini 2007, 2008, PRD 2010)

Angular power spectrum

Quantum equilibrium

Quantum nonequilibrium (no relaxation during inflation; product state)

But can we predict something about             ?



Can we predict something about            ?
(Work in progress)

One possible strategy:
• Consider a pre-inflationary (radiation-dominated) era

• Derive constraints on relic nonequilibrium from that era



Plausible scenario:

• Pre-inflation: nonequilibrium at super-Hubble wavelengths
(all                           at sufficiently early times)

• Some nonequilibrium modes enter the Hubble radius, 
and do not completely relax by the time inflation begins

• Larger wavelengths enter later, less likely to relax
before inflation begins

• Nonequilibrium possible only for     larger than
infra-red cutoff

• Try to predict        (depends on cosmology)

There is some (weak) evidence for an infra-red cutoff
in the primordial power spectrum



(to be detected today)

(Work in progress: rough scenario only)

or         

Lower bound

To maximise our chances, minimise the right-hand-side

Want          as small as possible (subject to the constraint
that further relaxation can be neglected)

Take         to be time           of decoupling

Nonequilibrium present at             might persist until much later

Then have lower bound



Rough estimates using the lower bound

or

Lower bound on wavelength today, 
at which nonequilibrium could be found.



(Or: nonequilibrium relics could be produced by inflaton decay.)

(Ridiculous)

(Hopeless)

(But can’t 
detect relic 
gravitons.
Still hopeless)



Ray of hope: 
Decouples very early, decay 
products (e.g. photons)
might be observable today

Illustration:

Low energies, perhaps accessible (dark matter decay?)



Inflaton decay

Require: 

?

Decay photons? Violations of Malus’ law?



Decay photons? Violations of Malus’ law?

deviates from ???

(above a certain wavelength)



More precise implications of the freezing inequality

Satisfied? Depends on history of expansion, 
and on time evolution of quantum state.

Super-Hubble wavelengths are necessary
but not sufficient.

Calculate time evolution of              (for a given a(t))
and find out which sub-ensembles satisfy the inequality.

On arXiv soon ....



Quantum theory is a special case of a much wider physics

Now know roughly where to look. More work to be done!
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