
x
– Typeset by FoilTEX – 1

Dynamical relaxation to quantum equilibrium..

..the magic of moving nodes

21st-century directions in de Broglie-Bohm theory and beyond, 30th August 2010

Mike Towler

TCM Group, Cavendish Laboratory, University of Cambridge

www.tcm.phy.cam.ac.uk/∼mdt26 and www.vallico.net/tti/tti.html

mdt26@cam.ac.uk

– Typeset by FoilTEX – 2

First deBB research project

Study approach to ‘quantum equilibrium’ using numerical trajectories

(1) Try to extend work of Valentini/Westman [Dynamical origin of quantum
probabilities, Proc. R. Soc. A 461, 253 (2005) - VW2005] and Colin/Struyve [Quantum
non-equilibrium and relaxation to equilibrium for a class of de Broglie-Bohm theories,
New J. Phys. 12 043008 (2010) - CS2010] in some interesting way.

(2) Gain some experience in practical calculations (and write some sort of general
computer program that is fast, easy-to-use, and readily extendable for more
complicated problems).

(3) Try to figure out some interesting things to do in the future with this sort of
technology.

Acknowledgements: Nick Russell, Antony Valentini

– Typeset by FoilTEX – 3

Quantum trajectory calculations

Schrödinger equation for both stationary and nonstationary states may be solved
exactly by propagating quantum trajectories, at least in principle. Probability
amplitude and phase of Ψ transported along trajectories and observables computable
directly in terms of this information. Investigations that employ quantum trajectories
may be broadly divided into two classes:

The analytic approach:

First solve TDSE using conventional techniques (fixed grids/basis set expansions).
Individual ‘particles’ then evolved along quantum trajectories x(t) with velocities
generated by Ψ-field via guidance equation ẋ = h̄

m Im∇ ln Ψ = ∇S/m. Patterns
developed by trajectories emanating from ensemble of ‘launch points’ exactly define
evolving system history. Used as means of understanding and exploring quantum
behaviour i.e. point is not to solve TDSE but to provide insight.

The synthetic approach:

Rather than guiding quantum trajectories with a precomputed wave function, the
trajectories and wave function are computed concurrently, on the fly. Wave packets
are evolved by propagating ensembles of quantum trajectories, which become the
computational tool for solving the ‘quantum hydrodynamic’ equations of motion.

Today we play around with a simple version of the first of these approaches.

– Typeset by FoilTEX – 4

Dynamical relaxation to quantum equilibrium. Why ρ = |Ψ|2?

Pauli objection: Taking a particular particle distribution ρ = |Ψ|2 as an
initial condition is unjustified in a fundamentally deterministic theory,
therefore ‘theories’ of this kind are incorrect [in Louis de Broglie: physicien et

penseur Festschrift, 1953].

Pauli was right in the sense that this should be derived from the dynamics, for QM
truly to emerge as the statistical mechanics of an underlying deterministic theory.

Easy to show if ρ(x, t) = |Ψ(x, t)|2 at any t it will always remain so under Schrödinger
time evolution (‘equivariance’). Can also show |Ψ(x, t)|2 is the only distribution
with this property i.e. ‘quantum equilibrium’ is unique [Goldstein, Struyve 2007]. It is

analogous to thermal equilibrium P = exp(−H/kT)
Z .

‘With deterministic hidden-variable theories the Born distribution should not be
regarded as an axiom. It should be seen as dynamically generated, in the same sense
that one usually regards thermal equilibrium as arising from a process of relaxation
based on some underlying dynamics.’

A quite general argument (due to Antony Valentini, 1992) for the relaxation ρ→ |Ψ|2
may be framed in terms of an analogy with the classical coarse-graining H-theorem.
One may also look at numerical simulations.

– Typeset by FoilTEX – 5

What was done in Valentini/Westman 2005 paper
Trajectory calculations for particle in a 2D box with initial ρ 6= |Ψ|2 and Ψ as a finite
out-of-phase superposition of N energy eigenstates.

Normally say get fast relaxation to equilibrium on coarse-grained level for large
numbers of particles. Clear from these simulations that large N in fact not needed
for relaxation to occur. Even for one particle, relaxation occurs rapidly if its Ψ is a
superposition of even a modest number of energy eigenfunctions.

Relaxation occurs because ρ and |Ψ|2 evolve like two fluids ‘stirred’ by same velocity
field. Most efficient mixing found to occur in neighbourhood of nodes or quasi-nodes,
where Ψ is small. These points move around inside box, rather like ‘electric mixers’ or
stirring devices moving through a fluid, generating an efficient relaxation everywhere.

Typicality and other views
Opposing camps exist in DeBB world differing in approach to P = |Ψ|2.

• Bell: ‘It is assumed that the particles are so delivered initially by the source’.

• Holland: Lists the |Ψ|2 distribution as one of four basic postulates of pilot-wave theory.

• Dürr, Goldstein, Zangh̀ı et al.: |Ψ|2 regarded as natural measure of probability or ‘typicality’ for

initial configurations of whole universe (taking Ψ as the universal wave function), yielding Born

rule for all subsystems at all times. [See Dürr and Teufel book for good discussion].

AV: ‘incorrect and deeply misleading’; postulates about initial conditions should have
no fundamental status in a theory of dynamics. This seems fair enough to me.

– Typeset by FoilTEX – 6

Additional simulations by Samuel Colin and Ward Struyve
‘Quantum non-equilibrium and relaxation to equilibrium for a class of de Broglie-Bohm-type theories’ (2010)

Repeat same 2D calculations while considering wider class of trajectory

equations with alternative velocity fields which keep |Ψ|2 invariant.

Given v = j/ρ = ∇S/m, can clearly add divergence-free term to

current, i.e. j = js + a where ∇ · a = 0. Usually assumed a is

zero (appropriate for spinless Schrödinger particles). For particles with

spin, Lorentz covariance sufficient to determine relativistic particle law

of motion uniquely. Assumption that non-relativistic guidance equation

is a limit of the relativistic (Dirac) one then uniquely fixes that law too:

v =
∇S
m

+
∇ log ρ× s

m
where s =

h̄

2
χ
∗
σχ

Spin thus a property of the wave field (the polarization-dependent part

of its angular momentum) not of the particle. The spin affects the

particle trajectory through a unique extra divergence-free contribution

to the spin-independent Schrödinger momentum field.

• C+S found relaxation time depends substantially on form of guidance

equation. In the regular Schrödinger theory the nodes are the only

source of vorticity; the additional velocity field from the spin yields

vorticity even away from nodes. Increased vorticity leads to greater

chaotic behaviour and decreased relaxation times.

• Large percentages of trajectories could not be calculated - particularly those that started near
nodes. Significant loss in accuracy in computing e.g. H function and relaxation times.

– Typeset by FoilTEX – 7

What I’m used to: nodes in quantum Monte Carlo

Nodes act as electric mixers! Not in QMC..

In fixed-node diffusion Monte Carlo calculations (the current state of

the art) we are very preoccupied with nodal surfaces of wavefunctions.

DMC accuracy depends only on shape of nodal surface of a ‘guessed’

trial many-electron wave function. We normally deal only with:

• Stationary states with real wave functions: Time-independent

3N − 1 dimensional hypersurface where Ψ is zero. Fixed-node

approximation most significant error in DMC.

• Stationary states with complex wave functions: Less common but

used in e.g. twist-averaging, non-collinear spins, magnetic fields.

Fixed-phase approximation in DMC.

It is normally stated that e.g. “very little is known about wave function nodes, and a systematic

study has never been attempted” (Bressanini, Ceperley, Reynolds) - meaning stationary state nodes as

above. In this talk we make things easier for ourselves (not!) by dealing with .. non-stationary states

with (necessarily) complex wave functions evolving in real time.

What do the nodes of such wave functions look like?

In general, we expect them to have a different topology to those for real functions. Imagine

something like: for complex functions in 3D get nodes along lines where zero surfaces of real and

imaginary functions cross. Similarly, in 2D lines become nodal points. Fewer barriers to movement of

configurations? - important in ‘time-dependent quantum Monte Carlo’? Save that for another time..

– Typeset by FoilTEX – 8

Student overhead: the time-dependent Schrödinger equation
Solve ih̄ ∂

∂tΨ(x, t) = HΨ(x, t) by separation of variables to give the following particular solutions

(which have the counterintuitive property of predicting time-independent observables):

Ψ(x, t) = φE(x)e
− i
h̄
Et |Ψ(x, t)|2 = |φE(x)|2

Where has the time gone? It is restored to us by a general solution to the TDSE - an arbitrary

superposition of the particular solutions:

Ψ(x, t) =

∞∑
n=1

anφn(x)e
− i
h̄
Ent (discrete spectrum)

=

∫ ∞
0

a(E)φE(x)e
− i
h̄
Et

dE (continuous spectrum)

Quite generally, a wave packet - a superposition of states having different energies - is required in

order to have a time-dependence in the probability density and in other observable quantities, such as

the average position or momentum of a particle. Simplest example: a linear combination of just two

particular solutions Ψ(x, t) = aφE(x)e−
i
h̄
Et + bφE′(x)e−

i
h̄
E′t. The probability density is given by:

|Ψ(x, t)|2 = |a|2|φE(x)|2 + |b|2|ΨE′(x)|2 + 2Re

{
a
∗
bφ
∗
E(x)φE′(x)e

−i(E
′−E)t
h̄

}

All the time-dependence is contained in the interference term.

– Typeset by FoilTEX – 9

The test case: particle in a 2D box

• System is a single particle in a 2D box with a (pure state) wave function Ψ(x, y, t) satisfying

Schrödinger equation (h̄ = 1)

i
∂Ψ

∂t
= −

1

2

∂2Ψ

∂x2
−

1

2

∂2Ψ

∂y2
+ VΨ.

• Box has sides of length π with infinite barriers. The energy eigenfunctions are

φmn(x, y) =
2

π
sin(mx) sin(ny)

with energy eigenvalues Emn = 1
2(m2 + n2), where m,n = 1, 2, 3, . . .

• Initial non-stationary Ψ is superposition of first N modes (m,n = 1, 2, 3, 4, . . .) with equal

amplitudes but randomly chosen phases θmn. Note Ψ periodic in time with period 4π (since

4πEmn is always an integer multiple of 2π).

Ψ(x, y, 0) =

√
N∑

m,n=1

1
√
N
φmn(x, y)e

iθmn Ψ(x, y, t) =

√
N∑

m,n=1

1
√
N
φmn(x, y)e

i(θmn−Emnt)

– Typeset by FoilTEX – 10

Approach to equilibrium in classical statistical mechanics
For a classical isolated system, both the probability density ρ and the volume element
dΩ (on phase space) are preserved along trajectories (Liouville’s theorem).

• Despite fact that dρ/dt = 0 we find ρ evolves in a highly complex ‘filamentary’
manner over energy surface so on a coarse-grained level ρ becomes uniform as
expected (whatever its initial shape). ‘Coarse graining’ involves dividing phase
space into little cells of volume δV and working with average of ρ in each cell (ρ̄).

• Can quantify difference between ρ and ρuniform with classical H-function, i.e.
Hclass =

∫
ρ ln ρ dΩ . This is minus relative entropy of ρ with respect to ρuniform

(standard measure of difference between two distributions). H bounded below by
zero, and equals zero if and only if ρ uniform on energy surface (equilibrium).

• Classical Hclass =
∫
ρ ln ρ dΩ is constant in time. If replace fine-grained ρ by

coarse-grained ρ̄ and assume ρ̄0 = ρ0 at t = 0, then H̄class(t) ≤ H̄class(0) for all t
- which is the classical coarse-graining H-theorem: i.e. H̄class either decreases
or remains constant, dH̄class/dt ≤ 0. Decrease of H̄class corresponds to formation
of structure in ρ and consequent approach of ρ̄ to uniformity.

• Relies on assumption ρ̄(0) = ρ(0) in phase space, i.e. no fine-grained microstructure
in initial conditions (which could lead to ‘unlikely’ entropy-decreasing behaviour).
Assumption necessary owing to time-reversibility of the theory.

Analogy with subquantum case if we let dΩ→ |Ψ|2dx and ρ be the density of quantum particles.

– Typeset by FoilTEX – 11

Subquantum H-theorem
Valentini’s argument for the relaxation ρ → |Ψ|2 is framed in terms of an analogy
with the classical coarse-graining H-theorem.

• For ‘sufficiently complex’ system assume have initial distribution ρ(x, 0) of
configurations x(0) each guided by the same Ψ, with ρ(x, 0) 6= |Ψ(x, 0)|2.

• By definition ρ(x, t) satisfies continuity equation ∂ρ/∂t + ∇ · (ẋρ) = 0, and
Schrödinger equation implies this is also satisfied by |Ψ|2. Since ẋ = ∇S/m, clear
that Ψ actually determines time evolution of ρ. So ratio f = ρ/|Ψ|2 is preserved
along trajectories: df/dt = ∂f/∂t+ ẋ · ∇f = 0.

• Initial deviations ρ 6= |Ψ|2 thus forever carried along trajectories and never
disappear, appearing to imply equilibrium unreachable (as with the ρ in classical
stat mech). We now define the subquantum H-function: H =

∫
|Ψ|2f ln f dx =∫

ρ ln(ρ/|Ψ|2) dx. Continuity equation and df/dt = 0 imply dH/dt = 0 i.e. exact
fine-grained H constant as in classical case.

• Divide config space into cells of volume δV and define coarse grained-quantities
e.g. ρ̄ = (1/δV)

∫
δV
ρ dx etc.. For coarse-grained H have dH̄/dt ≤ 0; necessary

and sufficient condition for H̄ to have minimum value is ρ = |Ψ|2 ⇒ equilibrium.
Decrease of H̄ corresponds to a ‘stirring’ of the two ‘fluids’ ρ and |Ψ|2 by the
same velocity field ẋ (since satisfy same continuity equation), making ρ and |Ψ|2
less distinguishable on a coarse-grained level.

See literature for e.g. defining quantum equilibrium of subsystems, and defining ‘relaxation times’.

– Typeset by FoilTEX – 12

The birth of LOUIS
A new code to do quantum trajectory calculations and study the approach to quantum equilibrium

Comparison with previous code kindly sent to me by Samuel Colin.

• Heavier.

• Several orders of magnitude faster. Allows us to do much bigger calculations.

• More accurate - fixed a few numerical errors so ‘bad trajectories’ greatly reduced.

• Change behaviour of calculation using flexible input file rather than changing the source code. Introduced
lots of internal error checking.

• General geometry.

• 1D, 2D, 3D calculations, not just 2D.

• Parallelized properly with MPI. Load balancing.

• Automated compilation with a proper Makefile and automatic architecture selection.

• Various modes of operation
- single trajectory (forwards or backwards in time).
- density
- density + H function + relaxation time.

• Added timing routines

• Uses significantly less memory (‘allocate’).

• Velocity formulae selectable in input (e.g. ordinary deBB or inclusion of ‘spin term’).

• Add alternative integrators (Bulirsch-Stoer, etc.). Good consistency check.

• Random phase generator with fixed presets.

Things to do

• General wave functions (no analytic formula). Would require numerical integration of the Schrödinger
equation.

• Multiple particles.

• Expanding space.

– Typeset by FoilTEX – 13

x

LOUIS input file

BASIC

calc_type : density #*! trajectory or density (Text)

dimensionality : 2 #*! Number of space dimensions (Int)

int_algorithm : runge-kutta #*! Integration algorithm (Text)

timing_info : T #*! Timers on/off (Boolean)

vel_type : deBB #*! Velocity formula to use (Text)

curlweight : 1.d0 #*! Weight of vel eq. curl term (Real)

cell_x : 3.141592653589793238 #*! Size of box: x (Real)

cell_y : 3.141592653589793238 #*! Size of box: y (Real)

TRAJECTORY OPTIONS

time_direction : forward #*! Forward or back in time (Text)

ntrajectories : 1 #*! No. of trajectories (Int)

traj_time_start : 0.d0 #*! Initial time (Real)

traj_time_end : 12.566370614359172952 #*! Final time (Real)

%block trajectory_start

1.570796326794896619 1.570796326794896619 0.d0

DENSITY OPTIONS

den_ntimes : 5 #*! No. of density plots (Int)

den_time_start : 0.d0 #*! Time for first density plot (Real)

den_time_end : 12.566370614359172952 #*! Time for last density plot (Real)

dentype : 0 #*! Select initial density (Int)

nlattice : 1024 #*! No. of lattice points (Int)

nscgrain : 64 #*! No. of points in scg cell (Int)

nsmoothstep : 8 #*! Step in smoothing procedure (Int)

read_backtracked : F #*! Read backtrack positions (Boolean)

save_backtracked : T #*! Save backtrack positions (Boolean)

plot_raw : F #*! Plot raw densities (Boolean)

plot_cg : F #*! Plot CG densities (Boolean)

plot_smooth : T #*! Plot smooth CG densities (Boolean)

hfunction : T #*! Compute H-function (Boolean)

plot_h_integrand : F #*! Plot H integrand (Boolean)

fastmode : T #*! Hard trajectories method (Boolean)

%block coarse_graining_lengths

5

4 8 16 32 64

– Typeset by FoilTEX – 14

x

WAVE FUNCTION

wfn_type : sine_wave #*! Type of wave function (Text)

nmodes : 4 #*! Number of modes/phases (Int)

phase_format : input #*! How to choose phases (Text)

phase_preset : 0 #*! Which set of preset phases (Int)

negphase : T #*! Reverse sign of phases (Boolean)

transposephase : F #*! Transpose 2D phase matrix(Boolean)

phase_noise : 0 #*! Phase noise in nth dp (Int)

%block phases

5.1305864145702568

6.2013294735531488

4.0145396815362080

3.4015356645345780

%endblock phases

ACCURACY CONTROL

maxstp : 100000 #*! Max integration iterations (Int)

init_eps : 0.0001d0 #*! EPS tolerance initial value (Real)

init_h : 0.0001d0 #*! Stepsize h initial value (Real)

converge_maxdiff : 0.01d0 #*! Trajectory convergence tol (Real)

DEVELOPMENT KEYWORDS

testrun : F #*! Perform test run (Boolean)

verbose : T #*! Toggle verbose output (Boolean)

PLOT

plot_output : x11 #*! Type of plot output (Text)

plot_title : auto #*! Title for plot (Text)

plot_type : density #*! Density/map/trajectory/bar (Text)

axislabels : T #*! Add labels to axes (Boolean)

spacetime : F #*! Spacetime traj in 2D (Boolean)

framerate : 10 #*! Framerate in fps - agif only (Int)

plane : z #*! Plane of cross-section - 3D (Text)

PLOT APPEARANCE

colour : T #*! Toggle colour in plots (Boolean)

linegradient : T #*! Line colour ==> z value (Boolean)

autorotate : F #*! Gnuplot default rotation (Boolean)

rot_x : 45.0 #*! Rotation about x axis - 1st (Real)

rot_z : 300.0 #*! Rotation about z axis - 2nd (Real)

colour_key : T #*! Key colour -> z value (Boolean)

shading : T #*! Shade surfaces/bars/maps (Boolean)

mesh : T #*! Show mesh on surfaces (Boolean)

contours : F #*! Plot contours - map (Boolean)

contour_no : 10 #*! Number of contours (Integer)

– Typeset by FoilTEX – 15

The code - what it’s supposed to do
Assume 2D for simplicity. Start with some initial non-equilibrium particle density ρ(x1, x2, 0) and

some initial non-stationary wave field Ψ(x1, x2, 0) (i.e. its absolute square is not constant in time).

Calculate (coarse-grained) particle density ρ̄(x1, x2, t) at various t and compare its shape with that

of the time-dependent wave field Ψ(x1, x2, t). Expect particles to become distributed as square of

the wave function over time. Monitor this ‘approach to equilibrium’ by computing the H-function.

How to evaluate the time-evolved density

Since f = ρ/|Ψ|2 is constant along a trajectory, one can calculate the time-evolved density as:

ρ(x1, x2, t) = |Ψ(x1, x2, t)|2f(x1(0), x2(0), 0)

For neatness, accuracy, and pretty plotting we want the density to be on a regular grid at time t which

is just what it won’t be if we allow the trajectories to evolve from a regular starting grid of points.

We therefore use a trick: we have a regular lattice of points defined on the cell at time t. We evolve

these backwards in time using the de Broglie dynamics to random positions x1(0), x2(0) at t = 0, at

which points we evaluate the f function in the above formula. Hence ρ(x1, x2, t) on a nice lattice.

How to evaluate the trajectories

We need to integrate numerically the first-order ODE dx
dt = v = ∇S

m = 1
mIm∇Ψ

Ψ , that is we shall

effectively do the following (though hopefully with slightly more sophistication):

x(t+ ∆t) = x(0) + v∆t = x(0) +

(
Im
∇Ψ

Ψ

)
∆t

Various possible algorithms e.g. Runge-Kutta, Bulirsch-Stoer, Verlet etc. Valentini et al. all used the

Runge-Kutta method. We shall (at least initially) do the same.

– Typeset by FoilTEX – 16

The Runge-Kutta method applied to calculating trajectories

• Literal implementation of x(t + ∆t) = x(0) + dx
dt

∆t
gives the not-very-practical Euler’s method. Runge-Kutta
is cleverer, but it still comes down to adding small increments

to your function given by derivatives (dx
dt

= velocity v in this

case) multiplied by stepsizes (here, in time ∆t = h).

• Runge-Kutta methods propagate a solution over an interval by
combining the information from several Euler-style steps (each
involving one evaluation of the derivative) and then using the
information obtained to match a Taylor series expansion up to
some higher order. The picture shows a 2nd-order algorithm
(we actually use a fancy 5th-order one).

All you need remember is the general form of a 5th-order Runge-Kutta formula:

k1 = hv(tn, xn)

k2 = hv(tn + a2h, xn + b21k1)

· · ·

k6 = hv(tn + a6h, xn + b61k1 + · · ·+ b65k5)

xn+1 = xn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 + O(h
6
)

So, essentially, every time you take a little step in t you have to compute the velocity six times. To get the velocity in a certain direction x you need
both Ψ and ∇xΨ, and the velocity is a hideous expression involving the sum of (say) 16 modes each of which involves two sines and a complex
exponential. We’re going to spend a lot of time calculating velocities.

For reasons too boring to discuss, the estimate of the error is ∆ =
∑6
i=1(ci − c

∗
i)ki. If we can estimate the error, we can try to keep it within

desired bounds. If the error is too big we repeat the step with a smaller stepsize h: adaptive stepsize control.

As a further check, after computing the entire trajectory, we redo it with a smaller value for the desired maximum error. If the final positions of
the two trajectories differ by more than some small amount, then we redo the whole thing with an even tighter tolerance. If we reduce the maximum
desired error to some crazily small value and still two successive trajectories don’t end up in the same place (or we exceed a large maximum number
of RK steps), then we say the trajectory has failed and we discount it in our calculations of densities etc.. C+S had a big problem with this.

– Typeset by FoilTEX – 17

Mano a mano with Samuel Colin
The need for speed

They say the code is slow - let’s make it go faster. Luckily the rate limiting step
is quite obvious.. the velocity! For 1024 × 1024 = 1048576 points, a typical
trajectory might take 3000 steps. Each call to a Runge-Kutta routine requires 6
velocities. Total number of calls to velocity routine to calculate density at one time
step: around 22 billion. Adding a timer to CS2010 code confirms it - around 90% of

the time is spent in the velocity routine. We must repeatedly evaluate v = Im∇Ψ
Ψ

,
where:

Ψ(x, y, t) =
1
√
mn

2

π

4∑
m,n=1

sin(mx) sin(ny)e
i(θmn−Emnt)

∇xΨ(x, y, t) =
m
√
mn

2

π

4∑
m,n=1

cos(mx) sin(ny)e
i(θmn−Emnt)

∇yΨ(x, y, t) =
n
√
mn

2

π

4∑
m,n=1

sin(mx) cos(ny)e
i(θmn−Emnt)

where Emn = 1
2(m2 + n2).

subroutine velocity(t,x,vnr,v)

use const,only:dp,dim,n,i,theta,pi,nv

integer, intent(in):: vnr

real(dp), intent(in):: t

real(dp), intent(in), dimension(dim):: x

real(dp), intent(out), dimension(dim):: v

real(dp),dimension(n)::cos1,cos2,sin1,sin2,vv

complex(dp) ::dfx,dfy,psi,phase

nv=nv+1

dfx = 0.0D0 ; dfy = 0.0D0 ; psi = 0.0D0

do k=1,n

cos1(k)=cos(k*x(1)) ; sin1(k)=sin(k*x(1))

cos2(k)=cos(k*x(2)) ; sin2(k)=sin(k*x(2))

end do

do k=1,n

do l=1,n

phase = 2.0D0*exp(-i*(theta(k,l)+ &

& 0.5D0*t*k**2+0.5D0*t*l**2))/(n*pi)

dfx = dfx+k*cos1(k)*sin2(l)*phase

dfy = dfy+l*sin1(k)*cos2(l)*phase

psi = psi+sin1(k)*sin2(l)*phase

end do

end do

v(1)=aimag(dfx/psi) ; v(2)=aimag(dfy/psi)

select case(vnr)

case(0)

case(1)

v(1)=v(1)+2.0D0*real(dfy/psi)

v(2)=v(2)-2.0D0*real(dfx/psi)

<snip>

end select

end subroutine velocity

– Typeset by FoilTEX – 18

Mano a mano with Samuel Colin
The need for speed

They say the code is slow - let’s make it go faster. Luckily the rate limiting step
is quite obvious.. the velocity! For 1024 × 1024 = 1048576 points, a typical
trajectory might take 3000 steps. Each call to a Runge-Kutta routine requires 6
velocities. Total number of calls to velocity routine to calculate density at one time
step: around 22 billion. Adding a timer to CS2010 code confirms it - around 90% of

the time is spent in the velocity routine. We must repeatedly evaluate v = Im∇Ψ
Ψ

,
where:

Ψ(x, y, t) =
1
√
mn

2

π

4∑
m,n=1

sin(mx) sin(ny)e
i(θmn−Emnt)

∇xΨ(x, y, t) =
m
√
mn

2

π

4∑
m,n=1

cos(mx) sin(ny)e
i(θmn−Emnt)

∇yΨ(x, y, t) =
n
√
mn

2

π

4∑
m,n=1

sin(mx) cos(ny)e
i(θmn−Emnt)

where Emn = 1
2(m2 + n2).

How to improve this?
• Use a better compiler and turn on compiler optimization (!).

• Hand-optimize this routine (and a few others).

• Stop the velocity routine being called so much.

• Don’t remove all the safety checks from the Runge-Kutta driver routine.

Time to calculate five densities on 1024× 1024 grid
CS2010 code : 222791 sec (2.5 days) LOUIS : 13010 sec (3.6 hours)

Speedup:×17.1. Samuel’s cluster has 16 nodes, so we’ve saved him the cost of a
parallel computer and he can now spend the money on girls and drink. (In some
circumstances the speedup was much higher..).

subroutine velocity(t,x,vnr,v)

use const,only:dp,dim,n,i,theta,pi,nv

integer, intent(in):: vnr

real(dp), intent(in):: t

real(dp), intent(in), dimension(dim):: x

real(dp), intent(out), dimension(dim):: v

real(dp),dimension(n)::cos1,cos2,sin1,sin2,vv

complex(dp) ::dfx,dfy,psi,phase

nv=nv+1

dfx = 0.0D0 ; dfy = 0.0D0 ; psi = 0.0D0

do k=1,n

cos1(k)=cos(k*x(1)) ; sin1(k)=sin(k*x(1))

cos2(k)=cos(k*x(2)) ; sin2(k)=sin(k*x(2))

end do

do k=1,n

do l=1,n

phase = 2.0D0*exp(-i*(theta(k,l)+ &

& 0.5D0*t*k**2+0.5D0*t*l**2))/(n*pi)

dfx = dfx+k*cos1(k)*sin2(l)*phase

dfy = dfy+l*sin1(k)*cos2(l)*phase

psi = psi+sin1(k)*sin2(l)*phase

end do

end do

v(1)=aimag(dfx/psi) ; v(2)=aimag(dfy/psi)

select case(vnr)

case(0)

case(1)

v(1)=v(1)+2.0D0*real(dfy/psi)

v(2)=v(2)-2.0D0*real(dfx/psi)

<snip>

end select

end subroutine velocity

– Typeset by FoilTEX – 19

Accuracy problems
There is a connection between the following statements!

“If the calculation of the backtracked position involves more than 105 time steps, it is halted and the

lattice point is ignored when calculating the coarse-grained and smoothed density.”

“We have tried to perform the simulations . . . but the percentage of trajectories that could be

backtracked was unacceptable.”

“Lattice points near nodes are generally harder to backtrack because the velocity field generally diverges

there. This is in particular the case for the lattice points near the boundary of the box. Therefore in

order to speed-up the calculations of the time-evolved non-equilibrium densities, we have ignored those

lattice points that lie within two coarse-graining cells near the boundary. As such there is an error in

calculating the coarse-grained H̄-function..”

“Note that some of the values of H̄ are negative. Theoretically this is impossible..”

Colin and Struyve (2010)

“The punishment for excessive greediness is interesting and worthy of Gilbert and Sullivan’s Mikado:

the routine can always achieve an apparent zero error by making the stepsize so small that quantities

of order hy′ add to quantities of order y as if they were zero. Then the routine chugs happily along

taking infinitely many infinitesimal steps and never changing the dependent variables one iota. (You

guard against this catastrophic loss of your computer budget by signalling on abnormally small stepsizes

or on the dependent variable vector remaining unchanged from step to step. On a personal workstation

you guard against it by not taking too long a lunch hour while your program is running.”

Numerical Recipes in Fortran 77, 2nd edition (1992)

‘Signalling on abnormally large stepsizes’: computers can’t add up 1.1826748282728462 and 1× 10−18 !

– Typeset by FoilTEX – 20

Example test case: particle in a 2D box

• System is a single particle in a 2D box with a (pure state) wave function Ψ(x, y, t) satisfying

Schrödinger equation (h̄ = 1)

i
∂Ψ

∂t
= −

1

2

∂2Ψ

∂x2
−

1

2

∂2Ψ

∂y2
+ VΨ.

• Box has sides of length π with infinite barriers. The energy eigenfunctions are

φmn(x, y) =
2

π
sin(mx) sin(ny)

with energy eigenvalues Emn = 1
2(m2 + n2), where m,n = 1, 2, 3, . . .

• Initial non-stationary Ψ is superposition of first N modes (m,n = 1, 2, 3, 4, . . .) with equal

amplitudes but randomly chosen phases θmn. Note Ψ periodic in time with period 4π (since

4πEmn is always an integer multiple of 2π).

Ψ(x, y, 0) =

√
N∑

m,n=1

1
√
N
φmn(x, y)e

iθmn Ψ(x, y, t) =

√
N∑

m,n=1

1
√
N
φmn(x, y)e

i(θmn−Emnt)

We have done these calculations with N=4, 9, 16, 25, 36, 49, 64 modes [previously only 16 (VW2005),

or 4 (CS2010)]. Typical 36-mode calc 300 times slower than 4-mode calc - not possible before!

– Typeset by FoilTEX – 21

Examples of trajectories

 0

 1

 2

 3

 0 1 2 3

proximity to node

 0

 1

 2

 3

 0 1 2 3

 0

 1

 2

 3

 0 1 2 3

start

end 1

end 2

(1.5,1.55)
(1.5,1.56)

– Typeset by FoilTEX – 22

Dynamical relaxation to quantum equilibrium
ψ2

 0

 1

 2

 3

 0 1 2 3

 0

 1

 2

 3

 0 1 2 3

 0

 1

 2

 3

 0 1 2 3

ρ

 0

 1

 2

 3

 0 1 2 3

(a) t=0

 0

 1

 2

 3

 0 1 2 3

(b) t=2π

 0

 1

 2

 3

 0 1 2 3

(c) t=4π

– Typeset by FoilTEX – 23

Effects of coarse-graining

Effects of coarse-graining for a 16-mode system at t = π
2 .

(d) ρ after coarse-graining of length 32 has been applied.
(e) Close-up on a single coarse-graining cell at the level of individual lattice points,
showing the irregular nature of the underlying distribution.
(f) Effect of coarse-graining using overlapping cells, giving a smoothed distribution
more suitable for visualization.

– Typeset by FoilTEX – 24

Exponential decay of the quantum H-function

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.5 1 1.5 2 2.5 3

ln
 H

t

H = 1.04 exp(- t/1.68)
ε = 16

49 modes
phases used: preset 0

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

ln
 H

t

H = 0.865 exp(- t/5.2)
ε = 16

16 modes
phases used: preset 0

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

ln
 H

t

H = 0.459 exp(- t/20.7)
ε = 16

09 modes
phases used: preset 0

– Typeset by FoilTEX – 25

Power law fit for τ vs. N

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

ln
(τ

)

ln(N)

ε = 4

τ ∝ N-1.06

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

ln
(τ

)

ln(N)

ε = 8

τ ∝ N-1.09

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

ln
(τ

)

ln(N)

ε = 16

τ ∝ N-1.09

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

ln
(τ

)

ln(N)

ε = 32

τ ∝ N-1.08

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

ln
(τ

)

ln(N)

ε = 64

τ ∝ N-1.05

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

ln
(τ

)

ln(N)

ε = 4; τ ∝ N-1.06

ε = 8; τ ∝ N-1.09

ε = 16; τ ∝ N-1.09

ε = 32; τ ∝ N-1.08

ε = 64; τ ∝ N-1.05

• It can be seen that for all coarse-graining lengths there is a roughly constant power
law with index around -1, in contrast to theoretical predictions of -3 (Valentini)
(∆E is the energy spread of the wave function and is proportional to N2):

τ ≈ h̄2

εm
1
2(∆E)

3
2

– Typeset by FoilTEX – 26

Nodes

• Divergent velocity field in the vicinity of nodes drive the relaxation process - their initial distribution

is very important in determining the relaxation rate. Varying the initial phases used in the wave

function will change the position of the nodes.

• In large superpositions (large N) there are many nodes and their distribution may be approximated

as uniform, so the average effect is similar for different sets of initial phases. With small superposition

of e.g. 4 modes, this approximation will no longer be valid; there may e.g. be only 1 node and its

initial position will have a much larger effect on the subsequent relaxation (it takes a lot longer and

τ has big errorbar).

• Valentini’s original prediction for the dependence of the relaxation time on the number of modes

(N−3 power law) is faulty since it assumes that the velocity field varies little over the length of a

coarse-graining cell. Especially with large numbers of modes in the superposition, this is not true.

• One can justify the observed N−1 scaling theoretically by defining a system to have relaxed when

the mean displacement of a degree of freedom is greater than its quantum spread (see Antony’s

derivation in forthcoming Russell, Towler, Valentini paper).

– Typeset by FoilTEX – 27

Questions about nodal structure

• How many nodes are there in the 2D box? Is there a simple relationship between this and the

number of modes in the superposition?

• In 2D, do the nodal points appear and disappear, or do they have a permanent existence? If not

constant, what is the mean density of points in the plane?

• In 3D, do the nodal lines form loops or are they strings with ends? Can they be knotted?

• If the length in 3D varies, what is the mean length?

• How fast do the nodes move?

• Does pair-correlation for moving nodes depend on sense of vorticity of the surrounding current?

See work of Michael Berry: ‘Phase singularities in isotropic random waves’

‘Phase singularities, that is, dislocations of wavefronts - also called optical vortices - are lines in space,

or points in the plane, where the phase of the complex scalar wave Ψ(r, t) = ρ(r, t) exp[iχ(r, t)]

is undefined. For the generic smooth Ψ we are interested in, dislocations are also loci of vanishing ρ:

in light, they are lines of darkness; in sound, threads of silence. Interest in optical dislocations has

recently revived, largely as a result of experiments with laser fields. In low-temperature physics, Ψ

could represent the complex order parameter associated with quantum flux lines in a superconductor

or quantized vortices in a superfluid.’

Calculates (1) mean length of dislocation line per unit volume, (2) mean density of dislocation points

in the plane, (3) eccentricity of the ellipse describing the anisotropic squeezing of phase lines close

to dislocation cores, (4) distribution of curvature of disclocation lines in space, (5) distribution of

transverse speeds of moving dislocations, (6) position correlations of pairs of dislocations in the plane,

with and without their ‘topological charge’.
– Typeset by FoilTEX – 28

LOUIS: some ideas about what to do with it
Relaxation time τ

The relaxation time τ is the time over which H̄ decreases (recall that H̄ = 0 then ρ and |Ψ|2 are the

same). Predicted theoretically to be inversely proportional to both the coarse-graining length ε and to

∆E
3
2 , where ∆E is the variance of the energy. Use LOUIS to study how τ varies with the number

of modes/mean energy/energy variance numerically.

Do we get scaling by a simple power of energy variance? Or of mean energy? Is there a general, fairly

robust scaling law, over some broad range of conditions? Would be useful to know, e.g. in cosmology.

Phenomenological equation for H̄

Previous studies have found an approximately exponential decay of H̄ with time. Can simulations

suggest a phenomenological equation for H̄ analogous to the Boltzmann equation? Presumably

this behaviour could be derived by supplementing the underlying dynamics with some sort of

phenomenological Markovian assumption, analagous to the classical hypothesis of molecular chaos

at every instant.

Nodal studies

Is there a tendency for neighbouring trajectories to diverge especially rapidly when they pass near a

node. Is the number of nodes a better measure of the relaxation rate? There might be a simple

relationship in the limit of a large number of nodes (think of the nodes moving around in the box like

a gas of moving particles, except each node is like an ‘electric mixer’ stirring up the ρ and |Ψ|2 ‘fluid’

densities).

– Typeset by FoilTEX – 29

LOUIS: some more ideas about what to do with it
Effect of small perturbations

Can small perturbations drive relaxation over long timescales? E.g. take Ψ(0) equal to the ground

state plus excited modes with tiny amplitude. Then, |Ψ|2 at all later times is close to the ground-state

wavefunction-squared. Without the perturbations, an initial nonequilibrium ρ would remain static and

always far from equilibrium. With the perturbations, can the trajectories eventually wander far enough

to drive relaxation, or is the distance travelled forever too small? This would obviate the need for

coarse-graining (necessary for isolated systems).

Look at expanding space

Valentini showed, for a scalar field on expanding space, relaxation

to equilibrium is expected to be suppressed for a specific range of

modes (long wavelength!). Possible consequence: a correction

to predictions for the temperature fluctuations of the cosmic

microwave background in the context of inflation theory.

Idea: generalize LOUIS so input is an initial nonequilibrium state for a given cosmology, and output

is then a prediction of where nonequilibrium will be found later on. Expanding flat space is a

good model of the early universe, and because of the expected asymptotic freedom all particles are

effectively massless and ‘relativistic’ at high T , so using a free scalar field to model ‘matter’ isn’t a bad

start. One might reasonably take the initial quantum state to be a mixed thermal ensemble of wave

functions (Which basis to use for decomposing the density operator? There are some proposals..). The

calculation can then be run separately for each pure sub-ensemble. LOUIS does this, going through

all the different pure sub-ensembles, until it finds one that doesn’t relax. That would give a prediction

for non-equilibrium today!

– Typeset by FoilTEX – 30

Finally MDT produces a de Broglie-Bohm paper!

– Typeset by FoilTEX – 31

