

About Pilot Wave Field Theory

Ilja Schmelzer

email: ilja.schmelzer@gmail.com, www: http://ilja-schmelzer.de

▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ■ のの⊙

Title	
0.	
The	

The New Ether

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

End

Why de Broglie-Bohm field theory?

Because it needs a preferred frame

Horrible. Why this?

Special reason: I am an ether theorist. Doing dBB theory is for me like going mainstream.

- dBB theory gives arguments in favour of a preferred frame, thus, supports ether theory.
- Ether theory makes a different proposal for fundamental beables the state of the ether. Fermions, gauge fields and gravity appear as effective fields.

The Denial Attack

The "Many Worlds in Denial" - Attack

Part of attack: BM has to postulate \hat{q} as preferred, while decoherence allows to derive a preferred basis.

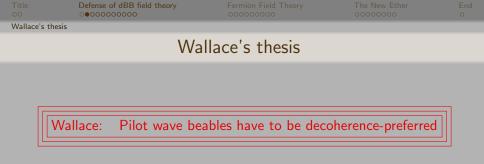
How? Given $Q \cong \mathbb{R}^n$, $H = \sum \hat{p}_i^2 + V(\hat{q}_1, \dots, \hat{q}_n)$, then decoherence allows to identify the \hat{q}_i as decoherence-preferred.

Counterattack: They also have to postulate something else.

1D:
$$H = \hat{p}_1^2 + V_1(\hat{q}_1) = \hat{p}_2^2 + V_2(\hat{q}_2), \ V_1 \neq V_2$$

2D: Two different decompositions into systems p_i, q_i so that H has same form $\sum \hat{p}_i^2 + V(\hat{q}_1, \hat{q}_2)$ with different but equally nice V(.,.)

arXiv:0901.3262: Why the Hamilton operator alone is not enough arXiv:0903.4657: Pure quantum interpretations are not viable



Schmelzer: Pilot wave beables may be even unobservable

Fact: Field beables not decoherence-preferred (particles are). \Rightarrow Pilot wave field theory invalid?

Effective field theory: Fields not even fundamental!

Pilot wave beables will be some yet unknown fundamental things.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

End

Wallace's thesis

Reconsideration of the equivalence proof

$$\mathbf{QM}: \quad \psi_m(x, t_0) \sum_{k} \alpha_k \phi_k(y, t_0) \Rightarrow \sum_{k} \alpha_k \psi_m^k(x, t_1) \phi_k(y, t_1)$$

BM: $x \in \sup \psi_m^k \Rightarrow \psi(x, y, t_1) \approx \psi_m^k(x, t_1)\phi_k(y, t_1)$

Common: We **observe** position of device pointer $x \in \sup \psi_m^k$; Better: Our own configuration is described by $x \in \sup \psi_m^k$;

- \Rightarrow No necessity for observable beables!
- \Rightarrow No problem with "fooled particle detectors"!

But macroscopic configurations ψ_{m}^{k} should not overlap

End O

Wallace's thesis

Overlaps of n-particle states in field theory

Overlap:

Simple definition: no overlap if $\forall \phi |\Psi_1(\phi)| |\Psi_2(\phi)| = 0$ Better: probability $\rho(\Psi_1|\Psi_2) = \int_{|\Psi_1(\phi)| < |\Psi_2(\phi)|} |\Psi_1(\phi)|^2 d\phi \ll 1$

States in field theory:

vacuum state: $\Psi_{vac}(\phi) = \prod_{k=1}^{\infty} \frac{1}{\sqrt{\pi}} e^{-\frac{1}{2}\phi_k^2}$, ϕ_k real coords in $\mathcal{L}^2(\mathbb{R})$ n-particle state: $\Psi_n(\phi) = \prod_{k=1}^n \sqrt{2}\phi_k \cdot \Phi_{vac}$

Overlap between two orthogonal n-particle states:

$$\rho_n = \frac{2^n}{\pi^{2n}} \int_{\prod_k \phi_{2k-1}^2 < \prod_k \phi_{2k}^2} (\prod_k \phi_{2k-1}^2) e^{-\sum_k (\phi_{2k-1}^2 + \phi_{2k}^2)} \prod_k \mathrm{d}\phi_{2k-1} \mathrm{d}\phi_{2k}.$$

Defense of dBB field the

Fermion Field Theory

End

Wallace's thesis

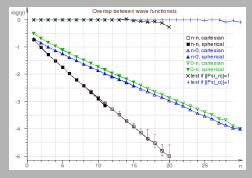
Overlaps of n-particle states in field theory

$$\rho_n = \frac{2^n}{\pi^{2n}} \int_{\prod_k \phi_{2k-1}^2 < \prod_k \phi_{2k}^2} (\prod_k \phi_{2k-1}^2) e^{-\sum_k (\phi_{2k-1}^2 + \phi_{2k}^2)} \prod_k \mathrm{d}\phi_{2k-1} \mathrm{d}\phi_{2k}.$$

Overlap of one-particle states in field theory $0.18169(\pm 1)$;

Monte Carlo simulation

- Cartesian coords
- spherical coords
- overlap (Ψ_{vac}, Ψ_n)
- security check 1 = 1
- error bounds



ロト 《聞》 《ヨ》 《ヨ》 三目 うへぐ

Wallace's thesis

What if there is no connection?

- N-dimensional Hilbert space (\mathbb{R}^N or \mathbb{C}^N);
- A basis ψ^i connected with the beables;

Case 1 — beables are decoherence-preferred:

The ψ_k are localized in this basis; $\|\psi_k\|_\infty \approx \|\psi_k\|_2$

Case 2 — no connection between beables and decoherence: The ψ_k are homogeneously distributes on the sphere $|\psi_k| = 1$ $(S^{N-1} \text{ or } \mathbb{C}P^{N-1})$

The different ψ_k are independent.

Defense of dBB field theo

Fermion Field Theory

The New Ethe

End O

Wallace's thesis

Upper bound for the overlap

$$E = \int_{S^{N-1}} \frac{\mathrm{d}\Omega_0}{A_{S^{N-1}}} \int_{S^{N-1}} \frac{\mathrm{d}\Omega_1}{A_{S^{N-1}}} \quad \sum_{i=1}^N \chi_{|\psi_0^i| < |\psi_1^i|} |\psi_0^i|^2$$

$$\int_{S^{N-1}} \frac{\mathrm{d}\Omega_{\psi}}{A_{S^{N-1}}} f(\psi) = \int_{-1}^{1} \frac{\mathrm{d}\psi_{0}}{2} \cdots \int_{-1}^{1} \frac{\mathrm{d}\psi_{N}}{2} f(\frac{\psi}{\|\psi\|_{2}^{N}}) N \frac{\|\psi\|_{N}^{N}}{\|\psi\|_{2}^{N}}.$$

Localized part:
$$\|\psi_k\|_{\infty} \ge (1 - \varepsilon) \|\psi_k\|_2$$
 for above ψ_k
 E_{ij} : maximal coordinates are $|\psi_0^i|$ and $|\psi_1^j|$.
 $E_{local} = \sum_i E_{ii} + \sum_{i \ne j} E_{ij} \le \frac{1}{N} + 2\varepsilon$

Remaining part: Say $\|\psi_0\|_{\infty} < (1-\varepsilon) \|\psi_0\|_2$, $\|\psi_1\|_{\infty} < \|\psi_1\|_2$ $\int_{-1}^{1} \frac{d\psi_0^1}{2} \cdots \int_{-1}^{1} \frac{d\psi_0^N}{2} \int_{-1}^{1} \frac{d\psi_1^1}{2} \cdots \int_{-1}^{1} \frac{d\psi_1^N}{2} \sum_i \chi_{|\psi_0^i| < |\psi_1^i|} \frac{|\psi_0^i|^2}{\|\psi_0\|_2^2} \le 1$ $E \le \frac{1}{N} + 2\varepsilon + N^2 (1-\varepsilon)^N$

Defense of dBB field theor
0000000000

The New Ether

End O

Wallace's thesis

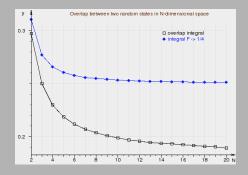
No connection – complex Hilbert space

$$E = \int_{\mathbb{C}P^N} \frac{\mathrm{d}\Omega_0}{A_{\mathbb{C}P^N}} \int_{\mathbb{C}P^N} \frac{\mathrm{d}\Omega_1}{A_{\mathbb{C}P^N}} \quad \sum_{i=1}^N \chi_{|\psi_0^i| < |\psi_1^i|} |\psi_0^i|^2 \le \frac{1}{N} + 2\varepsilon + (2N)^2 (1-\varepsilon)^{2N}$$

Hopf projection

 $S^{2N-1} o \mathbb{C}P^N$:

$$\int_{\mathbb{C}P^N} \frac{\mathrm{d}\Omega_0}{A_{\mathbb{C}P^N}} \Rightarrow \int_{S^{2N-1}} \frac{\mathrm{d}\Omega_0}{A_{S^{2N-1}}}$$



◆□ > ◆□ > ◆三 > ◆三 > ○ ● ○ ●

Defense of dBB field theory
0000000000

The New Ether

▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ■ のの⊙

End O

Wallace's thesis

But there is a connection!

Actual configuration $q_0 = q(t) \in Q$

Linear theory in the tangent space $\mathcal{T} \cong \mathcal{T}Q|_{q(t)}$

Systems as linear subspaces ${\mathcal T}_{S^i}$ of ${\mathcal T}$

Decomposition $\mathcal{T} \cong \prod \mathcal{T}_{S^i}$ gives decomposition $\mathcal{L}^2(\mathcal{T}, \mathbb{C}) \cong \bigotimes \mathcal{L}^2(\mathcal{T}_{S^i}, \mathbb{C})$ of the Hilbert space $\mathcal{L}^2(\mathcal{T}, \mathbb{C})$

Approximation of $\mathcal{H} \cong \mathcal{L}^2(Q, \mathbb{C})$ by $\mathcal{L}^2(\mathcal{T}, \mathbb{C})$

▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ■ のの⊙

Wallace's thesis

Consequences of the connection

- Product states tend to remain product states.
 Such a stability is reason for defining such decompositions.
- Local measurements destroy non-local superpositions

 $|\psi_1\rangle|\phi_1\rangle + |\psi_2\rangle|\phi_2\rangle \Rightarrow |\psi_1\rangle|\phi_1\rangle|\theta_1\rangle + |\psi_2\rangle|\phi_2\rangle|\theta_2\rangle.$

 q^{θ} not in overlap \Rightarrow resulting effective wave function is or $|\psi_1\rangle|\phi_1\rangle|\theta_1\rangle$ or $|\psi_2\rangle|\phi_2\rangle|\theta_2\rangle$

 \Rightarrow Product states preferred;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ろの(~

End O

Wallace's thesis

Plausibility arguments for product states

- Distance between the maxima increases like $\Delta^2 = \sum \Delta_i^2$
- Case of identical systems: Maximum of overlap ψ_{max} for one system, then maximum of overlap on line between maxima, with value ψ_{max}^N for N identical systems.
- Case of functions with values only in $\{0, 1\}$: For one system p, for N identical systems p^N .
- Case of n-particle states in field theory;
- \Rightarrow Strong plausibility arguments for exponential decrease in dependence on the number of systems.

 \Rightarrow Much more than we need, given macroscopic numbers of systems.

Introduction

Fermion Field Theory

The New Ether

▲ロ → ▲冊 → ▲ 目 → ▲ 目 → の Q ()

End

Fermions in Pilot Wave Theory

General scheme of de Broglie-Bohm pilot wave theory works for canonical quantum theories.

Necessity to obtain fermions from canonical quantization in another context: Ether interpretation for standard model fermions.

- Gives pairs of Dirac fermions (electroweak doublets);
- Gives heavy bosonic partners;

Canonical Fermion Quantization

Classical lattice theory: $\psi_n = \{\pi_n, \varphi_n\}, \varphi_n \in \mathbb{R}$. Canonical quantization gives bosonic field. We want fermionic field;

Introduction

 $\bigvee_{(\phi)} \bigvee_{(\phi)} \bigvee_{(\phi)} We \text{ use a } \mathbb{Z}_2\text{-degenerated potential } V(\varphi_n)$ with two vacuum states \Longrightarrow The ground states define a \mathbb{Z}_2 -valued or "spin field" theory.

Problem: Spin field operators σ_n^i of different nodes commute. But fermion operators ψ_n , ψ_n^* of different nodes anticommute.

- \oplus We nonetheless find an isomorphism.
- \ominus It is not natural, nonlocal, depends on some order.
- \Rightarrow We choose an order, transform $H(\sigma_n^i) \rightarrow H(\psi_n, \psi_n^*)$.
- \Rightarrow For $\mathit{dim}>1$ we need a local projection $\mathit{H}\rightarrow\pi_{\psi}\mathit{H}$
- \Rightarrow We obtain our lattice Dirac operator

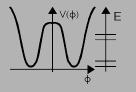
Defense of dBB field theory

Fermion Field Theory

Obtaining a spin field from a real field

How to get a $\mathbb{Z}_2\text{-valued}$ field from a real field

Lagrangian for a relativistic scalar field with \mathbb{Z}_2 -degenerated $V(\varphi)$: $\mathcal{L} = \frac{1}{2}((\partial_t \varphi)^2 - (\partial_i \varphi)^2) + \frac{\mu^2}{2}\varphi^2 - \frac{\lambda}{4!}\varphi^4$



Regularization: Lattice $\mathbb{Z}^3 \subset \mathbb{R}^3$. $\partial_i \varphi(x) \to \frac{1}{h}(\varphi_{n+1} - \varphi_n)$ $\partial_t \varphi(x) \to \frac{1}{2}(\partial_t \varphi_{n+1} + \partial_t \varphi_n)$ Canonical quantization!

 $\langle \Psi_1 H \Psi_1 \rangle - \langle \Psi_0 H \Psi_0 \rangle \sim e^{-\frac{\mu^3}{\lambda}} \ll \sqrt{2}\mu \sim \langle \Psi_2 H \Psi_2 \rangle - \langle \Psi_0 H \Psi_0 \rangle$ Low energy domain generated by $\Psi_{0/1}(\varphi_n)$ in each node:

Pauli matrices:
$$(\sigma_n^i)^2 = 1$$
, $[\sigma_m^i, \sigma_n^j] = 2i\delta_{mn}\varepsilon_{ijk}\sigma_n^k$.
 $H = c_0 \sum_n \sigma_n^3 + c_1 \sum_{n,i} \sigma_n^1 \sigma_{n+h_i}^1 + c_2 \sum_{n,i} \sigma_n^2 \sigma_{n+h_i}^2$

End

The isomorphism between spin field operators and fermion operators

Spin fields are not fermion fields!

Spin field operators on different nodes commute. Fermion opeators on different nodes anticommute:

$$\{\psi_m, \psi_n^*\} = \delta_{mn}, \ \{\psi_m^*, \psi_n^*\} = \{\psi_m, \psi_n\} = 0.$$

But isomorphism exist!

$$\psi_n^1 = \psi_n + \psi_n^*, \quad \psi_n^2 = -i(\psi_n - \psi_n^*), \quad \psi_n^3 = -i\psi_n^1\psi_n^2.$$

$$\psi_n^{1/2} = \sigma_n^{1/2} \prod_{m > n} \sigma_m^3, \qquad \psi_n^3 = \sigma_n^3, \sigma_n^{1/2} = \psi_n^{1/2} \prod_{m > n} \psi_m^3, \qquad \sigma_n^3 = \psi_n^3.$$

This is known in Clifford algebra theory: $Cl^{N,N}(\mathbb{R}) \cong M_{2^N}(\mathbb{R})$.

The New Ether

End O

Choice of the order

Choice of the order

Isomorphism nonlocal, not natural, depends on order.

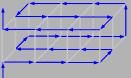
dim = 1: Natural order $\Rightarrow \sigma^i$ -local Hamiltonian local in ψ^i too.

dim > 1: Hamiltonian nonlocal in ψ^i : $\sigma^i_n \sigma^i_{n'} = \psi^i_n \psi^i_{n'} \prod_{n \ge m > n'} \psi^3_m$

We apply a ψ -local projection: $\pi_{\psi}(\sigma_n^i \sigma_{n'}^i) = \psi_n^i \psi_{n'}^i \psi_{n'}^3$.

Error $H \sim \pi_{\psi} H$ depends on order; Our choice of order:

Justification: It exactly preserves $\sigma_n^i \sigma_{n+h_k}^i = 1 - \frac{1}{2} ((1 - \tau_k) \sigma_n^i)^2:$ $\pi_{\psi}(\sigma_n^i \sigma_{n+h_k}^i) = \tilde{\sigma}_n^i \tilde{\sigma}_{n+h_k}^i = 1 - \frac{1}{2} ((1 - \tau_k) \tilde{\sigma}_n^i)^2$



Title Defense of dBB field theory

Fermion Field Theory

The New Ethe

End O

Transformation of the Hamilton operator

Transformation of the Hamilton operator

$$H = c_0 \sum_n \sigma_n^3 + c_1 \sum_{n,i} \sigma_n^1 \sigma_{n+h_i}^1 + c_2 \sum_{n,i} \sigma_n^2 \sigma_{n+h_i}^2$$

Special case: $c_0 = \frac{m}{2}$, $c_1 = -c_2 = -\frac{1}{4h}$.

$$\pi_{\psi} H = \frac{1}{2h} \sum_{n,i} \alpha_{n+h_i}^n (\psi_n \psi_{n+h_i} - \psi_n^* \psi_{n+h_i}^*) + \frac{m}{2} \sum_n \psi_n^* \psi_n - \psi_n \psi_n^*$$

 $\pi_{\psi}H$ is a lattice Dirac operator!

$$i\partial_t \psi_n = [\pi_{\psi} H, \psi_n] = \frac{1}{2h} \sum_i \alpha_{n+h_i}^n (\psi_{n+h_i}^* - \psi_{n-h_i}^*) - m\psi_n$$

Defense of dBB field theory

Fermion Field Theory

The New Ethe

End O

Dirac equation

The lattice Dirac equation

$$\boxed{i\partial_t\psi_n = \frac{1}{2h}\sum_i \alpha_{n+h_i}^n(\psi_{n+h_i}^* - \psi_{n-h_i}^*) - m\psi_n}$$

$$\alpha_{n+h_i}^n = \begin{cases} 1 & \text{if } n < n+h_i; \\ -1 & \text{if } n > n+h_i; \end{cases}$$

$$\alpha_m^n = \alpha_{m+2h_i}^{n+2h_i}; \quad \alpha_{n+h_i}^n \alpha_{n+2h_i}^{n+h_i} = 1; \quad \alpha_{n+h_i}^n \alpha_{n+h_i+h_j}^{n+h_i} = -\alpha_{n+h_j}^n \alpha_{n+h_i+h_j}^{n+h_j}$$

$$\boxed{\partial_t^2 \psi_n = \sum_i \frac{\psi_{n+2h_i} - 2\psi_n + \psi_{n-2h_i}}{(2h)^2} - m^2 \psi_n = -(\Delta_{2h} + m^2)\psi_n}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへで

Title 00 Doubling Defense of dBB field theory

Fermion Field Theory

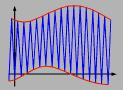
The New Ethe

End O

The doubling effect

Low energy solutions of $-\partial_t^2 \psi = (\Delta_{2h} + m^2)\psi$ smooth only on mod 2 sublattices!

 \Rightarrow we need eight continuous functions to describe one oscillating lattice function



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\kappa = (\kappa_1, \kappa_2, \kappa_3), \ \kappa_i \in \{0, 1\}$$

 $\psi(2n_1 + \kappa_1, 2n_2 + \kappa_2, 2n_3 + \kappa_3) = \psi_{\kappa}(n_1h, n_2h, n_3h)$

Electroweak doublets: $\mathbb{C}(\mathbb{Z}^3) \cong \{\psi(n_1, n_2, n_3)\} \to \mathbb{C}^8(\mathbb{R}^3)$

Advantage of non-relativistic approach

Comparison with relativistic approach

- dim = 3: Spatial lattice \Rightarrow 8 staggered fields $\psi_{\kappa_1\kappa_2\kappa_3}(\mathbf{n_i}, t)$. dim = 4: Spacetime lattice \Rightarrow 16 staggered fields $\psi_{\kappa_0\kappa_1\kappa_2\kappa_3}(n_\mu)$. Kogut-Susskind staggered fermions.
- $$\begin{split} \dim &= 3: \ i\partial_t \psi(\mathbf{x},t) = -i\alpha^i \partial_i \psi(\mathbf{x},t) + m\beta \psi(\mathbf{x},t); \quad \psi(\mathbf{x},t) \in \mathbb{C}^8\\ \dim &= 4: \ i\gamma^\mu \partial_\mu \psi(x) = m\psi(x); \qquad \qquad \psi(x) \in \mathbb{C}^{16} \end{split}$$
- dim = 3: geometric Dirac operator on $\mathbb{C} \otimes \Lambda(\mathbb{R}^3)$ with metric δ_{ij} dim = 4: Dirac-Kähler equation on $\mathbb{C} \otimes \Lambda(\mathbb{R}^4)$ with metric $\eta_{\mu\nu}$
- dim = 3: Two Dirac fermions \cong Electroweak doublets of SM. dim = 4: Four Dirac fermions \Rightarrow No interpretation in SM.

The New Ether

En O

The lattice of cells

The New Ether: A Lattice of Cells

State of cell: affine deformation $y^i = \varphi_j^i x^j + \varphi_0^i$ from standard reference cell at origin O.

Aff(3) $\cong \{\varphi_{\mu}^{i} \in \mathbb{R}, 1 \leq i \leq 3, 0 \leq \mu \leq 3\}.$

i: generation; $\mu > 0$ quark color; $\mu = 0$ leptons;

Configuration space of the whole lattice: Aff(3)(\mathbb{Z}^3): { $\varphi^i_\mu(n_1, n_2, n_3) : \mathbb{Z}^3 \to \text{Aff}(3)$ }

0'

Phase space: Aff(3) $\otimes \mathbb{C}(\mathbb{Z}^3)$: { $\psi^i_\mu(n_1, n_2, n_3) \in \mathbb{C}$ }

Doubling: Each complex function \cong one electroweak doublet

The gauge fields

The SM Gauge Fields

- They commute with rotations: preserve/act identical on all generations.
- They commute with translations: leaves translational direction fixed right-handed neutrinos inert.
- They preserve symplectic structure: compact \Rightarrow unitary.
- Wilson gauge fields: have same charge on whole doublets $\Rightarrow U(4) \Rightarrow U(3)_c \supset SU(3)_c$
- Lattice deformations: generated by lattice shifts $2\gamma^5 I_i$ $\Rightarrow U(2)_L \times U(2)_R \Rightarrow U(2)_L \times U(1)_R \supset SU(2)_L$
- EM field as combination: $U(3)_c \times U(2)_L \times U(1)_R \supset U(1)_\gamma$
- Dirac sea neutral: $\Rightarrow S(U(3)_c \times U(2)_L \times U(1)_R)$
- \Rightarrow $G_{SM} imes U(1)_{upper axial}$ anomal; Anomaly-freedom \Rightarrow G_{SM}

Defense of dBl

Fermion Field Theory

The New Ether

End O



▲ロ → ▲冊 → ▲ 目 → ▲ 目 → の Q ()

Imagine irregularities between the cells. This has some influence on the equation. We compensate it by some correction term, which acts on the phase space of one node.

Wilson gauge field.

Group G acts pointwise. But electroweak doublets are $\psi(n) \in \mathbb{C}$.

Wilson gauge fields

Thus, G has to have the same charge on the whole doublet.

 $\mathsf{G} \subseteq \mathsf{U}(3)_{\mathsf{c}} \cong \mathsf{SU}(3)_{\mathsf{c}} imes \mathsf{U}(1)_{\mathsf{B}}$

Wilson gauge fields have exact U(3) lattice gauge symmetry;

- Explains zero gluon (SU(3)) masses;
- Electrostrong SU(3)_c × U(1)_{em} action is really action of U(3) ≅ SU(3) × U(1)/ℤ₃. Deformation of exact U(3)_c?

The New Ether

End

The gauge fields

Lattice deformations as gauge fields

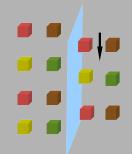
Correction terms for lattice deformations:

$$\psi_{n-h_i}\psi_n \rightarrow \psi_{n-h_i}(\psi_n + \sum_j a_j(n)\psi_{n+h_j})$$

 \Rightarrow effective gauge field on doublets;

 \Rightarrow generators: $\tilde{\tau}_i \rightarrow 2\gamma^5 I_i$

Maximal gauge group is: $U(2)_L \times U(2)_R$.



Translational invariance: $U(2)_L \times U(1)_R$ or $U(1)_L \times U(2)_R$.

No lattice gauge symmetry \Rightarrow weak gauge fields are massive;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The gauge fields

Consequences for pilot wave gauge theory?

Gauge fields are effective fields;

- Weak interactions do not have exact lattice gauge symmetry at all.
- Strong interactions have exact U(3) lattice gauge symmetry;

In above cases:

Gauge-equivalent configurations are different configurations.

 \Rightarrow No BRST factorization!

 \Rightarrow Corresponding problems for pilot wave field theories irrelevant.

End

Ether Theory of Gravity

Ether Theory of Gravity

$$\mathcal{L} = \frac{1}{2} \gamma_{\alpha\beta} X^{\alpha}_{,\mu} X^{\beta}_{,\nu} g^{\mu\nu} \sqrt{-g} + \mathcal{L}_{GR}(g^{\mu\nu}) + \mathcal{L}_{cov}(g^{\mu\nu}, \varphi_{matter})$$

harmonic coordinates $X^{\alpha}(x)$: $\frac{\delta S}{\delta X^{\alpha}} = \gamma_{\alpha\beta} \partial_{\gamma} (g^{\beta\gamma} \sqrt{-g}) = 0$

A variant of ADM decomposition for the foliation $T(x) = X^0(x)$:

 $\begin{array}{ll} g^{00} & \sqrt{-g} = \rho & \text{density } \rho \\ g^{0i} & \sqrt{-g} = \rho v^i & \text{velocity } v^i \\ g^{ij} & \sqrt{-g} = \rho v^i v^j - \sigma^{ij} & \text{stress tensor } \sigma^{ij} \\ \varphi_{matter} & \text{other material properties } \varphi_{mat} \end{array}$ $\begin{array}{ll} \text{continuity equation:} & \partial_t \rho + \partial_i (\rho v^i) = 0 \\ \text{Euler equations:} & \partial_t (\rho v^i) + \partial_i (\rho v^i v^j - \sigma^{ij}) = 0 \end{array}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Ether Theory of Gravity

Physical predictions:

- Exact Einstein Equivalence Principle.
- The Einstein equations of GR in some natural limit.
- No black hole singularity gravitational collapse stops before horizon formation, leading to a stable gravastar.
- No big bang singularity big bounce before big bang.
- Flat universe preferred as the only homogeneous universe.
- ρ > 0 ⇔ X⁰(x) timelike ⇒ no closed causal loops.
 Note: ρ → 0 possible, but parts with ρ < 0 unphysical.

The New Ethe

End O

Ether Theory of Gravity

Consequences for Bohmian mechanics

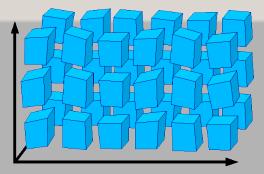
- No problem of time;
- Different equivalent metrics describe different states of the gravitational field;
- More degrees of freedom than in canonical GR;
- Gravitational field is effective fundamental beables are different;

End

The New Ether

End

Thank you very much for your attention



email: ilja.schmelzer@gmail.com, www: http://ilja-schmelzer.de Foundations of Physics, vol. 39, 1, p. 73 (2009), arXiv:0908.0591