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Outline of Talk

Goal: To explain the role of decoherence in the emergence of
macroscopic Newtonian behavior in pilot wave theory.

Outline:

I Formulating the problem: What do we mean by “classical
behavior”?

I Existing Accounts of Emergent Classicality in Pilot Wave
Theory

I Classicality in Isolated Subsystems

I The Need to Consider the Environment

I An Alternative Account of Classicality in Pilot Wave Theory



Formulating the Problem: What do we mean by “classical
behavior”?



Formulating the Problem

I We restrict our attention here to a small but important subset
of the systems that one might wish to call “classical.”

I These systems can be characterized as centers of mass of
macroscopic bodies such as planets and projectiles, which
contain on the order of ≈ 1023 quantum particles and which
obey Newtonian equations of motion.

I We seek to explain, on the basis of pilot wave theory, why the
Bohmian configurations associated with these centers of mass
follow Newtonian trajectories.



Formulating the Problem

I model classical behavior with a closed system comprised of two
subsystems:

I A subsystem S consisting of macroscopic degrees of freedom -
i.e., centers of mass

I A subsystem E consisting of residual microscopic degrees of
freedom (including the bodies’ internal degrees of freedom)



Formulating the Problem

I characterize the evolution of the quantum state as follows:

I Hilbert space: HSE = HS ⊗HE

HS : Hilbert space for macroscopic degrees of freedom (e.g.,
centers of mass of a group of planets)
HE : Hilbert space for microscopic, environmental degrees of
freedom (e.g. interstellar dust, radiation, internal degrees of
freedom of the planets)

I Wave function: Ψ = Ψ(X1, ...,XN , y1, ..., yn) ≡ Ψ(X , y).

I Schrodinger Equation: ı~∂Ψ
∂t = ĤΨ

I Hamiltonian: Ĥ = ĤS(X̂1, ..., X̂N) + ĤE (ŷ1, ..., ŷn) + ĤI (X̂ , ŷ),

ĤS(X̂1, ..., X̂N , P̂1, ..., P̂N) =
∑N

i=1
P̂2
i

2Mi
+
∑

i<j V (|X̂i − X̂j |)



Formulating the Problem

I Bohmian configuration: QS ,i =
∑

j
mjqj∑
j mj

,

I Bohmian configuration space: QSE = QS ×QE ,
QS : center of mass configuration space
QE : environment configuration space

I Bohmian guidance equations:
Q̇S ,i = 1

Mi
∇iS(X , y)|QS ,qE ,

q̇E ,j = 1
mj
∇jS(X , y)|QS ,qE ,

where Ψ(X , y) = R(X , y)e iS(X ,y), QS,i is the Bohmian
configuration of the i th center of mass in S , and qE ,j is the
Bohmian configuration of the j th microscopic particle in E
(see Rimini and Peruzzi, 2000).



Formulating the Problem

Goal: Explain why the trajectory of the Bohmian configuration QS

for the centers of mass is approximately Newtonian (Given certain
physically motivated assumptions about Ĥ).



Existing Accounts of Emergent Classicality in Pilot Wave Theory



Existing Accounts of Emergent Classicality in Pilot Wave
Theory: Brief Survey of the Literature

I Most accounts of classical behavior rely essentially on the
vanishing of the quantum potential or quantum force. The
alternative account that I offer here makes no use of the
quantum potential, but only of the constraint of equivariance.

I The quantum potential approach to classical behavior has
only been developed in any detail for the case where the
system S is isolated, so that ĤI = 0 and effects of the
environment are ignored (e.g., Holland). As a description of
actual macroscopic classical systems, the assumption of
isolation is highly unrealistic, since such systems are strongly
affected by the interaction with their evnironment.

I Some of these accounts briefly mention the role of
decoherence, but only briefly at the end of the analysis, and
not in much detail (e.g. Allori et al, Bohm, Durr and Teufel).



I Appleby also has calculated Bohmian velocties for relevant
degrees of freedom in the Caldeira-Legett model for a specific
set of initial conditions and spectral density. The calculations
suggest a classical trajectory for relevant degrees of freedom
in S , but his results lack generality because of the specificity
of the parameters of his model. Appleby does not propose a
set of general conditions for classical behavior.

I Bowman is an exception. The account that I provide below
elaborates some aspects of the approach that he suggests:
namely, to use decoherence to explain the existence of wave
packets which are effectively narrow and which cause the
Bohmian configuration to evolve classically. However,
Bowman does not recognize the need for a very specific kind
of decoherence in pilot wave theory, or describe the behavior
of the wave function for the entire closed system consisting of
both S and E .



Existing Accounts of Emergent Classicality in Pilot Wave
Theory: Brief Survey of the Literature

While the assumption of isolation is unrealistic, it is instructive to
consider how classical Bohmian trajectories emerge in isolated
systems before moving on to consider the effects of interaction
with the environment.



Classicality in Isolated Subsystems



Classicality in Isolated Subsystems

In the case of isolation, we assume that the central system’s
dynamics is described by

I Wavefunction

I Hilbert space: HS

I Wave function: Ψ = Ψ(X )
I Schrodinger Equation: ı~∂Ψ

∂t = ĤSΨ

ĤS(X̂1, ..., X̂N , P̂1, ..., P̂N) =
∑N

i=1
P̂2
i

2Mi
+
∑

i<j V (|X̂i − X̂j |)

I Bohmian Configuration

I Configuration space: QS

I Configuration: QS

I Dynamics: Q̇Si = ∇iS(X )|QS



Classicality in Isolated Subsystems

There are two popular ways to regain classical Bohmian trajectories
in isolated systems:

I Narrow wave packets

I The Quantum Potential Approach: Q, Q’ → 0

Both approaches strongly constrain the form of the wave function,
but in opposite ways, since the former requires that the wave
function be narrow and the latter that it be spread out.



Classicality in Isolated Subsystems
The Narrow Wave Packet Approach

I For any admissible wave function, Ehrenfest’s Theorem holds:

m
d2 < x̂ >

dt2
= −〈∂V (x̂)

∂x̂
〉 (1)

I For narrow wave packets, a stronger condition holds:

m
d2 < x̂ >

dt2
≈ −∂V (〈x̂〉)

∂〈x̂〉
(2)

I This second condition implies that a narrow wave packet
follows an approximately Newtonian trajectory as long as it
remains narrow (this is the reason that we have imposed the
no-spreading condition). By equivariance, we can expect
Bohmian trajectories to follow the wave packet they’re in.
Thus, if the wave function of the system remains in the form
of a narrow wave packet, its Bohmian trajectories will be
approximately Newtonian (to within an error given by the
width of the wave packet).



Classicality in Isolated Subsystems
The Narrow Wave Packet Approach

I Assume that wave packet spreading in S can be ignored over
the length and time scales for which we seek to approximate
Newtonian behavior.

I If ĤS is regular (i.e., not chaotic), the Mi being
macroscopically large (∼ 1kg .) will suffice to enforce this
assumption. However, if ĤS is chaotic, then a wave packet a
few Angstroms in width may, even in spite of macroscopically
large mass, spread to macroscopic width within a short time
span (days or weeks). In such a case, the wave packet’s
expectation value will no longer follow a Newtonian trajectory.

I Here, I restrict my attention to ĤS for which substantial
spreading (whether due to chaos or other factors) occurs on
time scales much longer than the timescales over which we
expect Newton’s laws to hold. This will occur if the mass is
sufficiently large and, in the case of chaotic HS , if the
Lyapunov exponent is sufficiently small.



Classicality in Isolated Subsystems
The Quantum Potential Approach
If one plugs in the polar decomposition of the wave function
Ψ = Re iS in the Schrodinger equation, one obtains the familiar
pair of coupled differential equations

∂S

∂t
+

1

2m
(∇S)2 + V − ~2

2m

∇2R

R
= 0, (3)

∂R2

∂t
+∇ · (R2∇S

m
) = 0. (4)

where
∮
∇S · ds = n~.

I The first is the Hamilton-Jacobi equation, but with an
additional “quantum potential” term, Q ≡ − ~2

2m
∇2R
R .

I The second is a continuity equation for the probability
distibution R2.

Bohmian trajectories become Newtonian in form when Q → 0, or
when ∇Q → 0.



Classicality in Isolated Subsystems

Problems with the narrow wave packet approach

I Even assuming that the system’s dynamics are such that
narrow wave packets remain narrow over appropriate
timescales, narrow wave packets constitute only a small subset
of possible solutions to the Schrodinger equation.

I The most general solution will, rather, be a superposition of
narrow wave packets of the form

|Ψ >=

∫
dq dp α(q, p) |q, p >, (5)

where α(q, p) is some complex coefficient and each |q, p >
traverses its own classical trajectory.

I While each wave packet |q, p > in the superposition traverses
a classical trajectory, such a solution will not generally yield a
classical trajectory for the Bohmian configuration, as we
demonstrate on the next slide.



Classicality in Isolated Subsystems
Problems with the narrow wave packet approach
Example

I Let S consist of a single center of mass governed by a free

Hamiltonian ĤS = P̂2

2m . If we like, m can be macroscopically
large.

I Let the wave function of this system take the form of two
initially separated wave packets passing through each other:

|Ψ >S=
1√
2

[|q1, p > +|q2,−p >]. (6)

I Bohmian trajectories associated with each packet will initially
follow the same classical path that their wave packets follow.

I However, Bohmian trajectories associated with a single pure
state can never cross. When the packets overlap, the
trajectories will reverse direction and leave the region of
overlap in the packet in which they did not begin. This
reversal is highly non-classical.



Problems with the narrow wave packet approach
More generally, this sort of non-classical behavior on the part of
the Bohmian trajectory will occur whenever the expansion of the
wave function contains wave packets that are initially separated
and later come to intersect as a result of the dynamics -
even if the mass is macroscopically large.



Classicality in Isolated Subsystems

Problems with the quantum potential approach

I One might expect, because of the m in the denominator of
Q ≡ − ~2

2m
∇2R
R , that large m will be sufficient to guarantee

that Q → 0.

I However, even for very large m, interference may cause the
curvature term ∇2R

R to trump m and make Q sizable.

I For example, a single WKB solution satisfies the condition
Q ≈ 0.

I However, a superposition of WKB solutions will not generally
satisfy the condition Q ≈ 0 (see Holland, 1993) because the
two solutions interfere.



Classicality in Isolated Subsystems

Summary

I Superpositions of narrow wave packets, or of solutions for
which Q ≈ 0, can yield highly non-classical Bohmian
trajectories even for large m. This is because interference
makes Q large.

I Thus, we cannot explain the emergence of classical
trajectories at the macroscopic scale by taking S as isolated
without excluding from consideration a very broad class of
solutions to the Schrodinger equation.

I The set of wave functions that one must throw away will
depend heavily on the dynamics of the particular system,
making such an exclusion seem especially ad hoc.

I We would like to explain the emergence of classicality for
some much more general class of initial wave functions.



The Need to Consider the Environment



The Need to Consider the Environment
Reconsider the example of two narrow wave packets above.
Suppose now that ĤI 6= 0 and the central system S becomes
entangled with the environment E . Suppose also that at every
time the wave function of the closed system SE has the form

|Ψ >SE=
1√
2

[|q1, p > ⊗|φ1 > +|q2,−p > ⊗|φ2 >], (7)

for some q1, q2, and p, where |φ1 >∈ HE and |φ2 >∈ HE and

Config Space Decoherence :< φ1|y >< y |φ2 >≈ 0 for all y ∈ QE .
(8)

This last condition amounts to a special kind of decoherence,
which we call “configuration space decoherence.” It is the
condition of disjoint configuration space supports.

In S ’s configuration space, the Bohmian trajectories of the center
of mass associated with the two wave packets pass through each
other and continue classically in a straight line.



The Need to Consider the Environment

In more general systems where the macro d.o.f’s in S are governed
by some non-zero potential V (x), and where the total wave
function takes the form

|Ψ >=
∑
i

α(qi , pi ) |qi , pi > ⊗|φi >, (9)

where

Config Space Decoherence :< φi |y >< y |φj >≈ 0 for all y ∈ QE , for i 6= j ,
(10)

the Bohmian trajectory of S will follow a single wave packet and
therefore evolve classically, even when packets overlap in S ’s
configuration space.



An Alternative Approach



An Alternative Approach
In pilot wave theory, the wave function determines the evolution of
the Bohmian configuration, but the Bohmian configuration has no
effect on the wave function. Relying on this observation, I divide
my analysis of emergent classicality into two stages:

I The first stage of the analysis closely mimics an Everettian
account of classicality since it is concerned exclusively with
the unitary evolution of the wave function. It closely follows
the analysis given by David Wallace in Chapter 3 of his recent
book.

I The second stage considers the effect that the wave function
has on the evolution of the Bohmian configuration. In doing
so, my account makes no reference to the quantum potential
or force, but instead determines the wave function’s effect on
the Bohmian configuration entirely through the constraint of
equivariance. However, in order to make use of equivariance,
we must invoke a well-motivated but unproven conjecture
discussed below.



An Alternative Approach: Part 1, the Wavefunction

First, consider the evolution of the wave function for the closed system SE ,
assuming only that the decoherence-preferred states of S (i.e., those which
suffer least entanglement with E) are the coherent states |q, p > (see Zurek,
1993) and for the moment allowing for the possibility of significant spreading in
S . For purposes of illustration, I consider the evolution in discrete time
intervals.

We can, in full generality, write the total state of SE (here, the state at t = 0)
as

|Ψ0 >=

∫
dq0dp0 α(q0, p0) |q0, p0 > ⊗|φ(q0, p0) >, (11)

Interaction between S and E will quickly cause decoherence. In pilot wave
theory, we require a stronger decoherence condition than in the Everett
interpretation, corresponding to the condition of disjoint supports:
Decoherence (Everett): < φ(q′0, p

′
0)|φ(q0, p0) >≈ 0 for (q0, p0) and (q′0, p

′
0)

sufficiently different.
Config Decoherence (Pilot Wave):
< φ(q′0, p

′
0)|y >< y |φ(q0, p0) >≈ 0 ∀y ∈ QE , for (q0, p0) and (q′0, p

′
0)

sufficiently different.



An Alternative Approach: Part 1, the Wavefunction

After time ∆t, an individual component of the wave function
|q0, p0 > ⊗|φ(q0, p0 > will evolve into some linear combination of
wave packets:

|q0, p0 > ⊗|φ(q0, p0 >
∆t−→

∫
dq1dp1 β(q1, p1; q0, p0) |q1, p1 > ⊗|φ(q1, p1; q0, p0) > .

(12)

By linearity of the equations of motion, the total state at time ∆t
will then be

|Ψ(∆t) >=

∫
dq0dp0dq1dp1 β(q1, p1; q0, p0) α(q0, p0) |q1, p1 > ⊗|φ(q1, p1; q0, p0) > .

(13)



An Alternative Approach: Part 1, the Wavefunction

Again, the interaction between the system and the environment
will cause decoherence, but the particular decoherence condition
that we require will depend on the interpretation that we assume.
Decoherence (Everett):
< φ(q′1, p

′
1; q′0, p

′
0)|φ(q1, p1; q0, p0) >≈ 0 if (qi , pi ) and (q′i , p

′
i ) are

sufficiently different for either i = 0 or i = 1.
Config Decoherence (Pilot Wave):
< φ(q′1, p

′
1; q′0, p

′
0)|y >< y |φ(q1, p1; q0, p0) >≈ 0 ∀y ∈ QE if

(qi , pi ) and (q′i , p
′
i ) are sufficiently different for either i = 0 or

i = 1.



An Alternative Approach: Part 1, the Wavefunction

Iterating this dynamics up to time t = N∆t, we find

|Ψ(N∆t) >=

∫
dq dp CN(q,p) |qN , pN > ⊗|φ(q,p) >, (14)

where
∫

dq dp≡
∫
dqNdpN ...dq0dp0,

CN(q,p)≡β(qN ,pN ;qN−1,pN−1)β(qN−1,pN−1;qN−2,pN−2)...β(q1,p1;q0,p0)α(q0,p0),
and |φ(q,p)>≡|φ(qN ,pN ;...;q0,p0)>.
The interaction between system and environment will cause
decoherence, and the particular kind of decoherence that we insist
upon will depend on the interpretation that we assume.
Decoherence (Everett):
< φ(q′N , p

′
N ; ...; q′0, p

′
0)|φ(qN , pN ; ...; q0, p0) >≈ 0 if (qi , pi ) and

(q′i , p
′
i ) are sufficiently different for any 0 ≤ i ≤ N.

Config Decoherence (Pilot Wave): <
φ(q′N , p

′
N ; ...; q′0, p

′
0)|y >< y |φ(qN , pN ; ...; q0, p0) > ≈ 0 ∀y ∈ QE ,

if (qi , pi ) and (q′i , p
′
i ) are sufficiently different for any 0 ≤ i ≤ N.



An Alternative Approach: Part 1, the Wavefunction

Note that the configuration decoherence requirement defines
disjoint regions of QE corresponding to different sequences
(qN , pN ; ...; q0, p0).



An Alternative Approach: Part 1, the Wavefunction

Now, assume ĤS is such that wave packets in S don’t spread
significantly over relevant time scales. In this case, the expression
for the evolution of the state up to some time t = N∆t simplifies
to

|Ψ(N∆t) >=

∫
dq0 dp0 α(q0, p0)|Ψq0,p0 (N∆t) > (15)

where

|Ψq0,p0 (N∆t) >≡ |q(N∆t), p(N∆t) >q0,p0 ⊗|φ(q, p) > . (16)

and |φ(q,p)>≡|φ(qN ,pN ;...;q0,p0)>, with (qi ,pi )≡(q(i∆t),p(i∆t))q0,p0 for
0<i≤N.



An Alternative Approach: Part 1, the Wavefunction

The two decoherence conditions are
Decoherence (Everett):
< φ(q′N , p

′
N ; ...; q′0, p

′
0)|φ(qN , pN ; ...; q0, p0) >≈ 0 if (qi , pi ) and

(q′i , p
′
i ) are sufficiently different for any 0 ≤ i ≤ N.

Config Decoherence (Pilot Wave): <
φ(q′N , p

′
N ; ...; q′0, p

′
0)|y >< y |φ(qN , pN ; ...; q0, p0) >≈ 0 ∀y ∈ QE , if

(qi , pi ) and (q′i , p
′
i ) are sufficiently different for any 0 ≤ i ≤ N.

Note: if (q0, p0) and (q′0, p
′
0) differ significantly, then so will

(qi , pi ) and (q′i , p
′
i ), for all 0 ≤ i ≤ N. At the level of the wave

function, this evolution describes a linear superposition of parallel
classical evolutions for S , in each of which the state of the
environment is constantly becoming correlated with the evolution
of S .



An Alternative Approach: Part 1, the Wavefunction
Since the dynamics is in fact continuous in time, taking the limit
∆t → 0, we can write this last state as

|Ψ(t) >=

∫
dq0 dp0 α(q0, p0) |Ψq0,p0 (N∆t) > (17)

where

|Ψq0,p0 (N∆t) >≡ |q(t), p(t) >q0,p0 ⊗|φ[q(t), p(t)] >, (18)

and |φ[q(t), p(t)] > is a functional of the trajectory
(q(t), p(t))q0,p0 .

The two decoherence conditions are
Decoherence (Everett): < φ[q′(t), p′(t)]|φ[q(t), p(t)] >≈ 0 if
(q(t), p(t)) and (q′(t), p′(t)) are sufficiently different for any t.
Config Decoherence (Pilot Wave):
< φ[q′(t), p′(t)]|y >< y |φ[q(t), p(t)] >≈ 0 ∀y ∈ QE , if
(q(t), p(t)) and (q′(t), p′(t)) are sufficiently different for any t.

Note: If (q0, p0) and (q′0, p
′
0) differ significantly, then so will (q(t), p(t)) and

(q′(t), p′(t)), for all t ≥ 0.



An Alternative Approach: Part 2, the Configuration

Assuming that the wave function is as given in (15), and satisfies
the configuration space decoherence condition, what can we infer
about the evolution of the Bohmian configuration? (For purposes
of illustration, we choose here to work with the discrete time
expression for the wave function, rather than the continuous time
one.)



An Alternative Approach: Part 2, the Configuration

The wave function components |Ψq0,p0(N∆t) > have disjoint
supports for sufficiently different (qN , pN ; ...; q0, p0). Denote the
region of support by the subset SEqN ,pN ;...;q0,p0 ⊂ QSE of the total
system’s configuration space:

SEqN ,pN ;...;q0,p0 ≡ suppε[Ψq0,p0 (X , y ,N∆t)] ⊂ QSE , (19)

where

Ψq0,p0 (X , y ,N∆t) ≡< X , y |Ψq0,p0 (N∆t) > . (20)

The disjointness of these regions can be expressed as the condition

SEqN ,pN ;...;q0,p0 ∩ SEq′N ,p
′
N ;...;q′0,p

′
0

= ∅ (21)

if (qi , pi ) and (q′i , p
′
i ) are sufficiently different for any 0 ≤ i ≤ N

(where, again, (qi , pi ) and (q′i , p
′
i ) will only differ substantially if

(q0, p0) and (q′0, p
′
0) do.)



An Alternative Approach: Part 2, the Configuration

Let us now assume that if qSE begins in one of the disjoint
packets, then it will remain in that packet as long as the future
evolutions of the different packets remain disjoint. That is, if
qSE (t = 0) is in the support of Ψq0,p0(X , y , t = 0), then it will be
in the support of Ψq0,p0(X , y ,N∆t) for all N > 0, for some fixed
(q0, p0). This claim can be formulated more precisely as follows:

Conjecture: Assume that the wave function of SE takes
the form given in (15) and satisfies the associated
configuration space decoherence requirement at all times
N∆t. If qSE (t = 0) ∈ SEq0,p0 , then
qSE (N∆t) ∈ SEqN ,pN ;...;q0,p0 for all N > 0 and for some
fixed (q0, p0).

Note: “For all N > 0” means for all N > 0 such that wave packet
spreading can be ignored.



An Alternative Approach: Part 2, the Configuration

Note that disjointness of wave packet supports for sufficiently
different (q, p) does not obviously guarantee that the
configuration qSE is guided by only a single wave packet.

In general in pilot wave theory, when the wave function is expanded
in terms of disjoint wave packets that are discretely indexed, there
are regions between packets where |Ψ| ≈ 0 and through which the
configuration therefore cannot pass. For this reason, we are
assured that the configuration does not drift between packets.

However, in cases where the disjoint wave packets are
continuously indexed, there are not necessarily regions where
|Ψ| ≈ 0 between disjoint wave packets. Thus, the conventional
arguments for effective collapse do not carry over to the continuous
case, and the guidance equation must be invoked in order to prove
that the configuration does not drift between disjoint packets.

(See blackboard for illustration)



An Alternative Approach: Part 2, the Configuration

Define

EqN ,pN ;...;q0,p0 ≡ suppε[< y |φ(qN , pN ; ...; q0, p0) >] ⊂ QE , (22)

and

SqN ,pN ≡ suppε[< X |q(N∆t), p(N∆t) >q0,p0 ] ⊂ QS . (23)

Then,

SEqN ,pN ;...;q0,p0 = SqN ,pN × EqN ,pN ;...;q0,p0 . (24)



An Alternative Approach: Part 2, the Configuration

Since qSE = (QS , qE ), it follows from the fact that

qSE (N∆t) ∈ SEqN ,pN ;...;q0,p0 (25)

that

QS(N∆t) ∈ SqN ,pN (26)

and

qE (N∆t) ∈ EqN ,pN ;...;q0,p0 (27)

for all admissible N.



An Alternative Approach: Part 2, the Configuration

By Ehrenfest’s Theorem, SqN ,pN follows a classical trajectory as
time evolves - that is, as N increases. Since the Bohmian
configuration QS of the macroscopic degrees of freedom lies in this
region for all N, it too follows an approximately classical trajectory.



An Alternative Approach: Part 2, the Configuration

I The Bohmian configuration qE of the environment lies in the
region EqN ,pN ;...;q0,p0 at time N∆t, and this region in turn is
associated through decoherence to the entire past trajectory
of the wave packet |q(N∆t), p(N∆t) >q0,p0 , and therefore
also to the trajectory of QS , which lies in the support of that
wave packet.

I Thus, knowledge of the configuration of qE at any time
enables us to infer QS ’s past trajectory, to within an error
determined by the configuration space width of the wave
packet < X |q(N∆t), p(N∆t) >q0,p0 .



Conclusion: Summary

I When we examine the structure of the wave function under
decoherence, we find that, for certain systems, the total wave
function of SE is a superposition of states, each of which
describes a classically evolving wave packet in S , tensor
producted with a state for the environment which becomes
correlated to the past trajectory of the wave packet.

I A natural but unproven conjecture suggests that, by the usual
Bohmian effective collapse mechanism, the Bohmian
configuration will follow just one of these packets.

I When we focus on the macroscopic degrees of freedom, we
find that the Bohmian configuration evolves classically.

I When we focus on the environmental degrees of freedom, we
find that the environmental configuration is correlated to the
past history of the macroscopic degrees of freedom.



Conclusion: Loose Ends

I Future work should show that the special kind of decoherence
required by pilot wave theory - decoherence with respect to
configuration space - does in fact occur.

I Future work should also show that, for continuously indexed
pointer bases, the presence of configuration space decoherence
ensures that the configuration stays in the same packet.

I The account should be generalized to include cases in which
branching due to chaos cannot be ignored.
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