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Basic cosmology: the standard model and its difficulties

Homogeneous & Isotropic metric (FLRW):
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Matter component: perfect fluid:
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+ cosmological constant = Einstein equation:
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Problems with standard model:

Singularity

Horizon

Flatness

Homogeneity

Perturbations

Dark matter

Dark energy / cosmological constant

Baryogenesis

...

Topological defects (monopoles)
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also available from
OXFORD UNIVERSITY PRESS

Cosmology 
Steven Weinberg

Particle Astrophysics: Second Edition
Donald H. Perkins

Cosmic Anger—Abdus Salam: The First Muslim Nobel Scientist 
Gordon Fraser 

Revolutionaries of the Cosmos—The Astro-Physicists 
Ian S. Glass

Cover image: ‘Le vent’ by Madeleine Attal (1997).

This book provides an extensive survey of all the physics necessary to understand the 
current developments in the field of fundamental cosmology, as well as an overview of
the observational data and methods. It will help students to get into research by providing
definitions and main techniques and ideas discussed today. The book is divided into three
parts. Part 1 summarises the fundamentals in theoretical physics needed in cosmology
(general relativity, field theory, particle physics). Part 2 describes the standard model of
cosmology and includes cosmological solutions of Einstein equations, the hot big bang
model, cosmological perturbation theory, cosmic microwave background anisotropies,
lensing and evidence for dark matter, and inflation. Part 3 describes extensions of this
model and opens up current research in the field: scalar-tensor theories, supersymmetry,
the cosmological constant problem and acceleration of the universe, topology of the 
universe, grand unification and baryogenesis, topological defects and phase transitions,
string inspired cosmology including branes and the latest developments. The book 
provides details of all derivations and leads the student up to the level of research articles. 

Patrick Peter and Jean-Philippe Uzan are at the Institut d'Astrophysique de Paris, France. 

‘Fills a niche that other recent cosmology texts leave open, namely self-contained 
derivations in cosmology that span both fundamental issues and applications to the real
universe that are of great interest to observers.’ Joseph Silk, University of Oxford

‘A remarkable book. Written with great authority and enthusiasm, it gives a comprehensive
view of primordial cosmology today. The style is accessible to a novice for a good 
introduction, as well as being technically precise enough to be useful for specialists.’

Ted Jacobson, University of Maryland

Primordial Cosmology

Patrick Peter
Jean-Philippe Uzan

oxford graduate texts

9 780199 209910
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Accepted solution = INFLATION

(Linde’s book)
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Problems of Inflation 3
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Fig. 1. Space-time diagram (sketch) showing the evolution of scales in inflationary
cosmology. The vertical axis is time, and the period of inflation lasts between ti and
tR, and is followed by the radiation-dominated phase of standard big bang cosmol-
ogy. During exponential inflation, the Hubble radius H

−1 is constant in physical
spatial coordinates (the horizontal axis), whereas it increases linearly in time after
tR. The physical length corresponding to a fixed comoving length scale labelled by
its wavenumber k increases exponentially during inflation but increases less fast than
the Hubble radius (namely as t

1/2), after inflation.

From R. Brandenberger, in M. Lemoine, J. Martin & P. P. (Eds.), “Inflationary cosmology”,
Lect. Notes Phys. 738 (Springer, Berlin, 2007).
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Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)

11
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Alternative model???

purely classical theory

singularity, initial conditions & homogeneity

Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)

Quantum gravity / cosmology
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Alternative model???

purely classical theory

singularity, initial conditions & homogeneity

Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)

Quantum gravity / cosmology

bounces (always in WdW - recall N. Pinto-Neto’s talk)

11
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Ekpyrotic scenario: 

3

inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
ing
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where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely
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where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.
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rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely

S4 =

∫

M4

d4x
√

−g4

[

R
(4)

2κ
−

1

2
(∂φ)2 − V (φ)

]
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with
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πγ

mPl

(ϕ − ϕi)

]

, (3)

where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.

3

inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
ing

S5 ∝
∫

M5

d5x
√

−g5

[

R
(5)

−
1

2
(∂ϕ)2 −

3
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e2ϕF2

5 !

]
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where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
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brane that collides with the visible one, generating the hot
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dark matter/energy, baryogenesis, ...
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ρcrit ≡
3H2

8πGN

Ω ≡
ρtot

ρcrit

Ω = 1 =⇒ K = 0

ä
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! 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
! 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

ti → −∞

d

dt
|Ω − 1| = −2

ä

ȧ3

tdiffusion

tHubble
∝

λ

R1/3
H

(

1 +
λ

AR2
H

)

=⇒

6

vacuum state!

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

=⇒
dV

dϕ
= I

S =
1

16πG
N

∫

d4x
√
−g

[

R +
N

∑

i=1

ϕiI
(i) − V (ϕ)

]

s → nπ

ma
x(s) =

Aa sin
(

s
√

1 + x2
)

+ Ba cos
(

s
√

1 + x2
)

sin s

1
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Initial conditions
fixed in the 
contracting era

∃t; !(t) = !0
a0

a(t)
≤ !

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf $ 10−3M
Pl

S3 > S2 > S1

η

1

∃t; !(t) = !0
a0

a(t)
≤ !

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf $ 10−3M
Pl

S3 > S2 > S1

a(η)

1

∃t; !(t) = !0
a0

a(t)
≤ !

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf $ 10−3M
Pl

S3 > S2 > S1

a(η)





Φ+
g

Φ+
d



 = Tij(k)





Φ−
g

Φ−

d





1

a = a0

[

1 +

(

T

T0

)2
]

1
3(1−ω)

K = +1

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T )Ψ(2) [v, T ; a (T )]

∆Φ = −
3!2

Pl

2

√

ρ + p

ω
a

d

dη

(v

a

)

ds2 = a2(η)
{

(1 + 2Φ) dη2 − [(1 − 2Φ) γij + hij ] dxidxj
}

dη = a3ω−1dT

i
∂Ψ(2)

∂η
=

∫

d3x

(

−
1

2

δ2

δv2
+

ω

2
v,iv

,i −
a′′

a

)

Ψ(2)

v′′k +

(

c2
S
k2 −

a′′

a

)

vk = 0

4

Perturbations:
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∃t; !(t) = !0
a0

a(t)
≤ !

Pl

V (ϕ)

∆ϕ4
≤ 10−12
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g

Φ+
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

 = Tij(k)





Φ−
g

Φ−

d





1

???????

a = a0

[

1 +

(

T

T0

)2
]

1
3(1−ω)

K = +1

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T )Ψ(2) [v, T ; a (T )]

∆Φ = −
3!2
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2

√

ρ + p

ω
a

d

dη

(v

a

)

ds2 = a2(η)
{

(1 + 2Φ) dη2 − [(1 − 2Φ) γij + hij ] dxidxj
}

dη = a3ω−1dT

i
∂Ψ(2)

∂η
=

∫

d3x
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−
1
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δ2

δv2
+

ω

2
v,iv

,i −
a′′

a

)

Ψ(2)

v′′k +

(

c2
S
k2 −

a′′

a

)

vk = 0

4

Perturbations:
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a = a0

[

1 +

(

T

T0

)2
]

1
3(1−ω)

K = +1

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T )Ψ(2) [v, T ; a (T )]

∆Φ = −
3!2

Pl

2

√

ρ + p

ω
a

d

dη

(v

a

)

ds2 = a2(η)
{

(1 + 2Φ) dη2 − [(1 − 2Φ) γij + hij ] dxidxj
}

dη = a3ω−1dT

i
∂Ψ(2)

∂η
=

∫

d3x

(

−
1

2

δ2

δv2
+

ω

2
v,iv

,i −
a′′

a

)

Ψ(2)

v′′k +

(

c2
S
k2 −

a′′

a

)

vk = 0

4

Perturbations:

S =

∫

d4x
√
−g

[

R

6!2
Pl

−
1

2
∂µϕ∂µϕ − V (ϕ)

]

ds2 = dt2 − a2(t)

(

dr2

1 −Kr2
+ r2dΩ2

)

H2 =
1

3

(

1

2
ϕ̇2 + V

)

−
K
a2

Φ =
3Hu

2a2θ
θ ≡

1

a

√

ρϕ

ρϕ + pϕ

(

1 −
3K

ρϕa2

)

7

S =

∫

d4x
√
−g

[

R

6!2
Pl

−
1

2
∂µϕ∂µϕ − V (ϕ)

]

ds2 = dt2 − a2(t)

(

dr2

1 −Kr2
+ r2dΩ2

)

H2 =
1

3

(

1

2
ϕ̇2 + V

)

−
K
a2

Φ =
3Hu

2a2θ
θ ≡

1

a

√

ρϕ

ρϕ + pϕ

(

1 −
3K

ρϕa2

)

u′′ +

[

k2 −
θ′′

θ
− 3K

(

1 − c2
S

)

]

u = 0

Pζ = Akn
S
−1 cos

(

ω
kph

k#
+ ψ

)

L = p(X, ϕ)

X ≡
1

2
gµν∂µϕ∂νϕ

T µν = (ρ + p)uµuν − pgµν

ρ ≡ 2X
∂p

∂X
− p

uµ ≡
∂µϕ√
2X

8

ω > −
1

3

S =

∫

d4x
√
−g

[

R

6"2
Pl

−
1

2
∂µϕ∂µϕ − V (ϕ)

]

ds2 = dt2 − a2(t)

(

dr2

1 −Kr2
+ r2dΩ2

)

H2 =
1

3

(

1

2
ϕ̇2 + V

)

−
K
a2

Φ =
3Hu

2a2θ
θ ≡

1

a

√

ρϕ

ρϕ + pϕ

(

1 −
3K

ρϕa2

)

u′′ +

[

k2 −
θ′′

θ
− 3K

(

1 − c2
S

)

]

u = 0

Pζ = AknS−1 cos2
(

ω
kph

k#
+ ψ

)

L = p(X, ϕ)

X ≡
1

2
gµν∂µϕ∂νϕ

T µν = (ρ + p)uµuν − pgµν

ρ ≡ 2X
∂p

∂X
− p

8

Bunch-Davies vacuum initial conditions: quantized perturbations over a classical background!!!
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T0a
3ω
0 ! 1500!Pl

nS = 0.96 ± 0.02 =⇒ w ∼< 8 × 10−4

! 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
! 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

ti → −∞

d

dt
|Ω − 1| = −2

ä

ȧ3

tdiffusion

tHubble
∝

λ

R1/3
H

(

1 +
λ

AR2
H

)

=⇒

ω > −
1

3

6

17

A specific model: 4D Quantum cosmology

Perfect fluid: bounce

no horizon problem if 

Results:
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H =

(

−
p2

a

4a
−Ka +

pT

a3ω

)

N

a3ω

HΨ = 0

i
∂Ψ

∂T
=

1

4
a3(ω−1)/2 ∂

∂a

[

a(3ω−1)/2 ∂

∂a

]

Ψ + KaΨ

K = 0 =⇒ χ ≡
2a3(1−ω)/2

3(1 − ω)
=⇒ i

∂Ψ

∂T
=

1

4

∂2Ψ

∂χ2

χ > 0

Ψ̄
∂Ψ

∂χ
= Ψ

∂Ψ̄

∂χ

Ψ =

∫

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

Ψ =

[

8T0

π (T 2
0 + T 2)

2

]
1
4

exp

(

−
T0χ

2

T 2
0 + T 2

)

e−iS(χ,T )

S =
Tχ2

T 2
0 + T 2

+
1

2
arctan

T0

T
−

π

4

4

Quantum cosmology
+ canonical transformation
+ rescaling (volume …)
+ units

= a simple Hamiltonian:

constraint

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

3

Wheeler-De Witt

∃ x(t)

m
d2

x(t)
dt2

= −∇ (V + Q)

∃t0; ρ (x, t0) = |Ψ (x, t0)|2

Q −→ 0

ds
2 = N

2(τ)dτ − a
2(τ)γijdx

idx
j

p = p0

�
ϕ̇ + θṡ

N(1 + ω)

� 1+ω
ω

(ϕ, θ, s) =

T = −pse−s/s0p
−(1+ω)
ϕ s0ρ

−ω
0

H =
�
−p

2
a

4a
−Ka +

pT

a3ω

�
N

a
3ω

HΨ = 0

2

+ Technical trick:

18
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ȧ = {a, H}

a = a0

[

1 +

(

T

T0

)2
]

1
3(1−ω)

K = +1

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T )Ψ(2) [v, T ; a (T )]

∆Φ = −
3!2

Pl

2

√

ρ + p

ω
a

d

dη

(v

a

)

ds2 = a2(η)
{

(1 + 2Φ) dη2 − [(1 − 2Φ) γij + hij ] dxidxj
}

dη = a3ω−1dT

i
∂Ψ(2)

∂η
=

∫

d3x

(

−
1

2

δ2

δv2
+

ω

2
v,iv

,i −
a′′

a

)

Ψ(2)

5

19

WKB exact superposition:

Gaussian wave packet

phase

Bohmian trajectory

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

3

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

3

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

Ψ =

�
8T0

π (T 2
0 + T 2)2

� 1
4

exp
�
− T0χ2

T 2
0 + T 2

�
e−iS(χ,T )

3

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

Ψ =

�
8T0

π (T 2
0 + T 2)2

� 1
4

exp
�
− T0χ2

T 2
0 + T 2

�
e−iS(χ,T )

S =
Tχ2

T 2
0 + T 2

+
1
2

arctan
T0

T
− π

4

3
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quantum potential

i
∂Ψ
∂T

=
1
4
a
3(ω−1)/2 ∂

∂a

�
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(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a
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∂Ψ̄
∂χ

Ψ =
�

eiET
ρ(E)ψE(T )dE
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4
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4
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2
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ȧ = {a,H}

a = a0
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1 +
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T
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Q(T )

4
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4

Trajectory
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Usual treatment of the perturbations?

conformal time

Einstein-Hilbert action up to 2nd order

Wave function? No question about it ...

Bardeen (Newton) gravitational potential

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T ) Ψ(2)) [v, T ; a (T )]

∆Φ = −
3�

2
Pl

2

�
ρ + p

ω
a

d
dη

�
v

a

�

dη = a
3ω−1dT

4

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T ) Ψ(2)) [v, T ; a (T )]

∆Φ = −
3�

2
Pl

2

�
ρ + p

ω
a

d
dη

�
v

a

�

ds
2 = a

2(η)
�
(1 + 2Φ) dη

2 − [(1− 2Φ) γij + hij ] dx
idx

j
�

dη = a
3ω−1dT

i
∂Ψ(2)

∂η
=

�
d3

x

�
−1

2
δ
2

δv2
+

ω

2
v,iv

,i − a
��

a

�
Ψ(2)

v
��
k +

�
c
2
S
k

2 − a
��

a

�
vk = 0

c
2
S

=
√

ω �= 0

vk ∝
exp(−icSkη�

2cSk

4

SE−H =
∫

d4x
[

R(0) + δ(2)R
]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

=⇒
dV

dϕ
= I

S =
1

16πG
N

∫

d4x
√
−g

[

R +
N

∑

i=1

ϕiI
(i) − V (ϕ)

]

1

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!! z = z[a(η)]

∫

d4x δ(2)L ∝
∫

d4x

[

(∂v)2 +
z′′

z
v2

]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

=⇒
dV

dϕ
= I

1

dη = a(t)−1dt

z = z[a(η)]

∫
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∫
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z′′

z
v2

]

ω =
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3

tdissipation
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I = R −
√

3 (4RµνRµν − R2)

1

dη = a(t)−1dt

z = z[a(η)]

∫

d4x δ(2)L =
1

2

∫ √
γd3x dη

[

(∂ηv)2 − γij∂iv∂jv +
z′′

z
v2

]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

1
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Usual treatment of the perturbations?

conformal time

Einstein-Hilbert action up to 2nd order

Wave function? No question about it ...

Bardeen (Newton) gravitational potential

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T ) Ψ(2)) [v, T ; a (T )]

∆Φ = −
3�

2
Pl

2

�
ρ + p

ω
a

d
dη

�
v

a

�

dη = a
3ω−1dT

4

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T ) Ψ(2)) [v, T ; a (T )]

∆Φ = −
3�

2
Pl

2

�
ρ + p

ω
a

d
dη

�
v

a

�

ds
2 = a

2(η)
�
(1 + 2Φ) dη

2 − [(1− 2Φ) γij + hij ] dx
idx

j
�

dη = a
3ω−1dT

i
∂Ψ(2)

∂η
=

�
d3

x

�
−1

2
δ
2

δv2
+

ω

2
v,iv

,i − a
��

a

�
Ψ(2)

v
��
k +

�
c
2
S
k

2 − a
��

a

�
vk = 0

c
2
S

=
√

ω �= 0

vk ∝
exp(−icSkη�

2cSk

4

SE−H =
∫

d4x
[

R(0) + δ(2)R
]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

=⇒
dV

dϕ
= I

S =
1

16πG
N

∫

d4x
√
−g

[

R +
N

∑

i=1

ϕiI
(i) − V (ϕ)

]

1

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!! z = z[a(η)]

∫

d4x δ(2)L ∝
∫

d4x

[

(∂v)2 +
z′′

z
v2

]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

=⇒
dV

dϕ
= I

1

Classical

dη = a(t)−1dt

z = z[a(η)]

∫

d4x δ(2)L ∝
∫

d4x

[

(∂v)2 +
z′′

z
v2

]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

1

dη = a(t)−1dt

z = z[a(η)]

∫

d4x δ(2)L =
1

2

∫ √
γd3x dη

[

(∂ηv)2 − γij∂iv∂jv +
z′′

z
v2

]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

1



Vallico Sotto - 2nd September 2010 21

Usual treatment of the perturbations?

conformal time

Einstein-Hilbert action up to 2nd order

Wave function? No question about it ...

Bardeen (Newton) gravitational potential

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T ) Ψ(2)) [v, T ; a (T )]

∆Φ = −
3�

2
Pl

2

�
ρ + p

ω
a

d
dη

�
v

a

�

dη = a
3ω−1dT

4

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T ) Ψ(2)) [v, T ; a (T )]

∆Φ = −
3�

2
Pl

2

�
ρ + p

ω
a

d
dη

�
v

a

�

ds
2 = a

2(η)
�
(1 + 2Φ) dη

2 − [(1− 2Φ) γij + hij ] dx
idx

j
�

dη = a
3ω−1dT

i
∂Ψ(2)

∂η
=

�
d3

x

�
−1

2
δ
2

δv2
+

ω

2
v,iv

,i − a
��

a

�
Ψ(2)

v
��
k +

�
c
2
S
k

2 − a
��

a

�
vk = 0

c
2
S

=
√

ω �= 0

vk ∝
exp(−icSkη�

2cSk

4

SE−H =
∫

d4x
[

R(0) + δ(2)R
]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

=⇒
dV

dϕ
= I

S =
1

16πG
N

∫

d4x
√
−g

[

R +
N

∑

i=1

ϕiI
(i) − V (ϕ)

]

1

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!! z = z[a(η)]

∫

d4x δ(2)L ∝
∫

d4x

[

(∂v)2 +
z′′

z
v2

]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

=⇒
dV

dϕ
= I

1

Classical Quantum

dη = a(t)−1dt

z = z[a(η)]

∫

d4x δ(2)L ∝
∫

d4x

[

(∂v)2 +
z′′

z
v2

]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

1

dη = a(t)−1dt

z = z[a(η)]

∫

d4x δ(2)L =
1

2

∫ √
γd3x dη

[

(∂ηv)2 − γij∂iv∂jv +
z′′

z
v2

]

ω =
1

3

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

1



Vallico Sotto - 2nd September 2010 22

Our treatment of the perturbations? Self-consistent ...
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+ canonical transformations:

Fourier mode

Bunch-Davies vacuum initial conditions

+ evolution (matchings and/or numerics)
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FIG. 1: Time evolution of the scalar mode function for the equation of state ω = 0.1 in the one-fluid model of the bounce. The
left panel shows the full time evolution which was computed, i.e., the function S(x), while the right panel shows v(x) itself,
both plots having k̃ = 10−3. For x < 0, there are oscillations only in the real and imaginary parts of the mode, so the amplitude
shown is a non oscillating function of time. It however acquires an oscillating piece after the bounce has taken place.
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FIG. 1: Time evolution of the scalar mode function for the equation of state ω = 0.1 in the one-fluid model of the bounce. The
left panel shows the full time evolution which was computed, i.e., the function S(x), while the right panel shows v(x) itself,
both plots having k̃ = 10−3. For x < 0, there are oscillations only in the real and imaginary parts of the mode, so the amplitude
shown is a non oscillating function of time. It however acquires an oscillating piece after the bounce has taken place.
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canonical transformation generated by

U = exp

[

i

(
∫

d3x
ȧv2

2a

)]

× (25)

× exp

{

i

[
∫

d3x

(

vπ + πv

2

)

ln

(

1

a

)]}

. (26)

As a(T ) is a given quantum trajectory coming from
Eq. (17), Eq. (25) must be viewed as the generator of
a time dependent canonical transformation to Eq. (17).
It yields, in terms of conformal time, the equation for
Ψ(2)[v, a(η), η]

i
∂Ψ(2)

∂η
=

∫

d3x

(

−
1

2

δ2

δv2
+

ω

2
v,iv

,i −
a′′

2a
v2

)

Ψ(2).

(27)

This is the most simple form of the Schrödinger equa-
tion which governs scalar perturbations in a quantum
minisuperspace model with fluid matter source. The cor-
responding time evolution equation for the operator v in
the Heisenberg picture is given by

v′′ − ωv,i
,i −

a′′

a
v = 0, (28)

where a prime means derivative with respect to confor-
mal time. In terms of the normal modes vk, the above
equation reads

v′′k +

(

ωk2 −
a′′

a

)

vk = 0. (29)

These equations have the same form as the equations for
scalar perturbations obtained in Ref. [1]. This is quite
natural since for a single fluid with constant equation of
state ω, the pump function z′′/z obtained in Ref. [1] is
exactly equal to a′′/a obtained here. The difference is
that the function a(η) is no longer a classical solution
of the background equations but a quantum Bohmian
trajectory of the quantized background, which may lead
to different power spectra.
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FIG. 1: Time evolution of the scalar mode function for the equation of state ω = 0.1 in the one-fluid model of the bounce. The
left panel shows the full time evolution which was computed, i.e., the function S(x), while the right panel shows v(x) itself,
both plots having k̃ = 10−3. For x < 0, there are oscillations only in the real and imaginary parts of the mode, so the amplitude
shown is a non oscillating function of time. It however acquires an oscillating piece after the bounce has taken place.
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in accordance with the classical relations ȧ = {a, H} =
−a(3ω−1)Pa/2 and Pa = ∂S/∂a.

Inserting the phase of (20) into Eq. (22), we obtain the
Bohmian quantum trajectory for the scale factor:

a(T ) = a0

[
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]

1
3(1−ω)

. (23)

Note that this solution has no singularities and tends to
the classical solution when T → ±∞. Remember that we
are in the gauge N = a3ω, and T is related to conformal
time through

NdT = adη =⇒ dη = [a(T )]3ω−1 dT. (24)

The solution (23) can be obtained for other initial wave
functions (see Ref. [8]).

The Bohmian quantum trajectory a(T ) can be used
in Eq. (16). Indeed, since one can view a(T ) as a func-
tion of T , it is possible to implement the time dependent
canonical transformation generated by
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As a(T ) is a given quantum trajectory coming from
Eq. (17), Eq. (25) must be viewed as the generator of
a time dependent canonical transformation to Eq. (17).
It yields, in terms of conformal time, the equation for
Ψ(2)[v, a(η), η]
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(27)

This is the most simple form of the Schrödinger equa-
tion which governs scalar perturbations in a quantum
minisuperspace model with fluid matter source. The cor-
responding time evolution equation for the operator v in
the Heisenberg picture is given by

v′′ − ωv,i
,i −

a′′

a
v = 0, (28)

where a prime means derivative with respect to confor-
mal time. In terms of the normal modes vk, the above
equation reads

v′′k +

(

ωk2 −
a′′

a

)

vk = 0. (29)

These equations have the same form as the equations for
scalar perturbations obtained in Ref. [1]. This is quite
natural since for a single fluid with constant equation of
state ω, the pump function z′′/z obtained in Ref. [1] is
exactly equal to a′′/a obtained here. The difference is
that the function a(η) is no longer a classical solution
of the background equations but a quantum Bohmian
trajectory of the quantized background, which may lead
to different power spectra.
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FIG. 1: Time evolution of the scalar mode function for the equation of state ω = 0.1 in the one-fluid model of the bounce. The
left panel shows the full time evolution which was computed, i.e., the function S(x), while the right panel shows v(x) itself,
both plots having k̃ = 10−3. For x < 0, there are oscillations only in the real and imaginary parts of the mode, so the amplitude
shown is a non oscillating function of time. It however acquires an oscillating piece after the bounce has taken place.
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which implies in the Bohm interpretation that
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in accordance with the classical relations ȧ = {a, H} =
−a(3ω−1)Pa/2 and Pa = ∂S/∂a.

Inserting the phase of (20) into Eq. (22), we obtain the
Bohmian quantum trajectory for the scale factor:

a(T ) = a0

[

1 +

(

T

T0

)2
]

1
3(1−ω)

. (23)

Note that this solution has no singularities and tends to
the classical solution when T → ±∞. Remember that we
are in the gauge N = a3ω, and T is related to conformal
time through

NdT = adη =⇒ dη = [a(T )]3ω−1 dT. (24)

The solution (23) can be obtained for other initial wave
functions (see Ref. [8]).

The Bohmian quantum trajectory a(T ) can be used
in Eq. (16). Indeed, since one can view a(T ) as a func-
tion of T , it is possible to implement the time dependent
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As a(T ) is a given quantum trajectory coming from
Eq. (17), Eq. (25) must be viewed as the generator of
a time dependent canonical transformation to Eq. (17).
It yields, in terms of conformal time, the equation for
Ψ(2)[v, a(η), η]
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This is the most simple form of the Schrödinger equa-
tion which governs scalar perturbations in a quantum
minisuperspace model with fluid matter source. The cor-
responding time evolution equation for the operator v in
the Heisenberg picture is given by

v′′ − ωv,i
,i −

a′′

a
v = 0, (28)

where a prime means derivative with respect to confor-
mal time. In terms of the normal modes vk, the above
equation reads

v′′k +

(

ωk2 −
a′′

a

)

vk = 0. (29)

These equations have the same form as the equations for
scalar perturbations obtained in Ref. [1]. This is quite
natural since for a single fluid with constant equation of
state ω, the pump function z′′/z obtained in Ref. [1] is
exactly equal to a′′/a obtained here. The difference is
that the function a(η) is no longer a classical solution
of the background equations but a quantum Bohmian
trajectory of the quantized background, which may lead
to different power spectra.

Best fit to the data!!!
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FIG. 2: Rescaled power spectra for scalar and tensor pertur-
bations as functions of time for ω = 0.01 and two different
values of k̃. It is clear from the figure that not only both
spectra reach a constant mode, but also that this mode does
behave as indicated in Eqs. (46) and (50). It is purely inci-
dental that the actual constant value of both modes are very
close for that particular value of ω. The constant values ob-
tained in this figure are the one used to derive the spectrum
below. In this figure and the following, the value of nS used
to rescale Φ is the one derived in Eq. (46), thus proving the
validity of the analytic calculation.
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FIG. 3: Rescaled power spectra for ω = 8×10−4, correspond-
ing to the conservative maximum bound on the deviation from
a scale invariant spectrum nS = 1.01, as function of k. The
scalar spectrum PΦ is the full line, while the dashed line is
the gravitational wave spectrum Ph. Also shown is the ratio
T/S (dotted); in this case, the T/S " 5.2 × 10−3, i.e. almost
two orders of magnitude below the current limit. This case
has a typical bounce length-scale of L0 ∼ 1.47 × 103"Pl . The
amplitude of the modes is obtained as the constant part of
Fig. 2.

satisfies the same dynamical equation (51) with cs → 1,
with µ subject to initial condition
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From the above defined spectra, one reads the ampli-
tudes
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where we assume the classical relation between Φ and the
curvature perturbation ζ through
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to obtain the observed spectrum. Since both spectra are
identical power laws, and indeed almost scale invariant
power laws, the tensor-to-scalar (T/S) ratio, defined by
the CMB multipoles C$ at $ = 10 as
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, (61)

can easily be computed (see, e.g., [16] and references
therein). In Eq. (61), the function F depends entirely
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WMAP constraint

predictions

spectrum slightly blue

power-law + concordance
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Numerical aside (Mike’s talk monday):
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Numerical aside (Mike’s talk monday):

Scaling
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monopoles = ???

Dark energy ...

dBB Cosmology without inflation?

 New solutions to old puzzles

 No singularity 

 G.R. ...

(oscillations, T/S ...)New predictions

Other models (many fluids, scalar fields, ...)

Possible and testable!

Model dependence

Future

Non gaussianities

Relaxation?Polarizations


