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1.1.1.- Introduction: Why to use Bohmian mechanics?

Reason 1: Bohmian Thinking: 

.-Looking for extensions/limitations/contradictions of ‘Orthodox’ QM.

Reason 2: Bohmian Explaining: 

.- An intuitive/simpler/causal explanation of QM phenomena.
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and fluctuations
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1.1.1.- Introduction: Why Bohmian mechanics?

Reason 3. Bohmian computing: 

“Synthetical” : without explicitly computing the wavefunction
C i i i

“Analytical” : Bohmian trajectories from the wavefunction

Quantum Hamilton-Jacobi equation Continuity equation
2
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H drod namic q ant m eq ation: B Kendrix

Synthetical examples from the Physical-Chemistry community:

With t t j t i Hydrodynamic quantum  equation: B. Kendrix

Lagrangian (moving with the flow): Robert E.Wyatt

Without trajectories:

With trajectories:

5Valid for 1, 2, 3... degrees of freedom
Complex Action: D.Tannor



1.1.2.- Introduction: The “many-body” problem

P.A.M. Dirac, 1929

“The general theory of quantum mechanics is now 
almost complete. The underlying physical laws 

necessary for the mathematical theory of a large part 
of physics and the whole of chemistry are thus 

completely known, and the difficulty is only that thecompletely known, and the difficulty is only that the 
exact application of these laws leads to equations 

much too complicated to be soluble.”

Max Born, 1960

”It would indeed be remarkable if Nature fortified herself 
against further advances in knowledge behind the 
analytical difficulties of the many-body problem ”analytical difficulties of the many-body problem.
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1.2.- Introduction: The “many-body” problem

The many-particle (non-relativistic spinless) Schrödinger equation

2
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Many particle wave function

The practical solution is inaccesible for more than very few electrons

Exercise: Number of hard disks to load the (finite-difference) wave-
function in a PC memory for N=10 particles, L=50nm length (Δx=1 nm)     

The practical solution is inaccesible for more than very few electrons

y p , g ( )

nº of variables (1 particle) = 503 = 125000 variables  !!
nº of variables (Total degrees of freedom) = 503N = 5030 variables  !!

nº of  bits =  5030 variables *16 bits/variable  ̴̴  138 Terabytes  !! 

nº of  PCs ̴̴   100000000000000000000000000000000000000  Hard disks
7



1.1.2.- Introduction: Some ‘Orthodox’ solutions available in the literature

Orthodox solutions:
•Many-electron wave-functions having the form of antysimmetric product 
of single-particle wave-functions (“orbitals”).
• Leads to an effective single-particle Schrodinger equation with a 
potential determined by all others “orbitals”

Hartree-Fock

potential determined by all others orbitals . 

•The “orbitals” are solutions of single-particle Schrodinger equation which

Density Functional Theory (W.Kohn)

The orbitals  are solutions of single particle Schrodinger equation which 
depends on the charge density rather than the “orbitals” themselves.
•There are terms (the exchange potentials) that are unknown and have to be 
approximated.pp

Quantum Monte Carlo (ex: CASINO  Mike Towler)

Pseudo-Bohmian solutions:

Hidrodynamic quantum Monte Carlo: Ivan. P. Christov
Quantum Fluid Density Functional framework: P.K. Chataraj

8
DFT Super symmetric quantum mechanics, E. Bittner
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1.2.1.- Our MPBT Theorem: the basic idea

Single-particle Bohmian trajectory xa[t], 1( , )x t

x

t
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Many-particle Bohmian trajectory xa[t],

x1 1 1[ ]x x tm 
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What is the equation satisfied by this single-particle wave-function ?



1.2.1.- Our MPBT Theorem: the basic idea

( , )a ax tAny  arbitrary complex “function”: a a

can be written in Schrödinger-like equation:
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What is the complex “potential” satisfied by this single-particle wave-function ?



1.2.1.- Our MPBT Theorem: the basic idea

What is the complex “potential” satisfied by this single-particle wave-function ?
2 2
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3rd step Use the quantum Hamiltonian-Jacobi equations
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Use the quantum Hamiltonian Jacobi equations



1.2.2.- Our MPBT Theorem: Good points

2 2( , ) ( [ ] ) ( [ ] ) · ( [ ] ) ( )ax ti U x x t t G x x t t i J x x t t x t
  

      
    2 ( , [ ], ) ( , [ ], ) ( , [ ], ) ( , )

2 * a a b a b a b a
a

i U x x t t G x x t t i J x x t t x t
t m x

       


Good points : [X. Oriols, Phys. Rev. Lett. 98, 066803 (2007)]

1st An exact procedure for computing many-particle Bohmian trajectories

2nd The rest of trajectories in the potentials have to be Bohmian trajectories

3rd The correlations are introduced into the time-dependent potentials

4th The interacting potential for “classical” correlations

p p

th h i l i l f l i l l i5th There is a real potential to account for “non-classical” correlations

6th There is a imaginary potential to account for non-conserving norms
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7st “Analytical” (for 1D,2D,..TDSE) + “Synthetical”  (for the rest).



1.2.2.- Our MPBT Theorem: Bad points

2 2( , ) ( [ ] ) ( [ ] ) · ( [ ] ) ( )ax ti U x x t t G x x t t i J x x t t x t
  

      
    2 ( , [ ], ) ( , [ ], ) ( , [ ], ) ( , )

2 * a a b a b a b a
a

i U x x t t G x x t t i J x x t t x t
t m x

       


Bad points :

1st The Bohm trajectories for the rest of particles have to be known
Ok! no problem, we will use a single-particle equation for each particles

2nd The terms G and J depends on the many-particle wave-function
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¡ This is exactly the same difficulty found in the DFT (or TD-DFT)  !
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1.3.1.- Approximate methods for G and J terms: The simplest approximation

Exercise: What happens if the many-particle wave-function is separable ?
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1.3.1.- Approximate methods for G and J terms: The simplest approximation
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1.3.2.- Application to systems with non-identical particles

Example: two Coulomb interacting particles
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1.3.2.- Application to systems with non-identical particles

Example: two interacting tunneling particles
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1.3.3.- Application to systems with “identical” particles

The exchange interaction appears in the symmetries of the many-particle 

Where is the exchange interaction ?

g pp y y p
wave-function (in the configuration space) when particles are exchanged
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1.3.3.- Application to systems with “identical” particles

How we include the exchange interaction ?

Write, the fermionic/bosonic wave function as a sum of a wave-
f ti ith t h i t ti

g

One wave-function with exchange interaction: 

functions without exchange interaction.    

 1 2 (1) (2) ( )( , ,.., , ) · ( , ,.., , )N P p p p Nx x x t C x x x t  

Many wave-functions without exchange interaction,  

( ) · ( )( , ) · ( , )· pa pat i t
a a pa ax t C x t e    

How can we know the phases without computing them ?
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1.3.3.- Application to systems with “identical” particles

How can we know the phases without computing them ?

By imposing exchange conditions on the set of “no exchange” wave-functions

Example: N=2 fermionsExample: N 2 fermions

1 2 1 1 2 2 1 2 2 1( , ,0) ( ,0)· ( ,0) ( ,0)· ( ,0)x x x x x x     

1 1 11 1 11 21 1 21( , ) ( , )· ( ) ( ,0)· ( )x t x t w t x w t    

( ) ( )· ( ) ( 0)· ( )x t x t w t x w t    
2 2 12 2 12 22 2 22( , ) ( , ) ( ) ( ,0) ( )x t x t w t x w t   

2 Conditions: 1 2( [ ], ) 0x t t 
2  Conditions:

2 1( [ ], ) 0x t t 

22



1.3.3.- Application to systems with “identical” particles

General expression:
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1.3.3.- Application to systems with “identical” particles

Example: two (Coulomb and Exchange) interacting particles

Only antisymmetrical wave-functions are valid What is the difference due 
to the Exchange interaction?
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Observable results are identical when we interchange the initial position of electrons
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2.1.1.- The electron transport at the nanoscale: the “many-body” problem

Many particle Schrödinger equationMany-particle Schrödinger equation 
for electron devices:
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2.1.1.- The electron transport at the nanoscale: the “many-body” problem

i i ?

1.- Open system

What is an electron device ?

2.- Statistical system

3.- Far from equilibrium          

4.- Strongly correlated system

WhatWhat wewe measuremeasure ?? We measure the total (conduction + displacement) current in

the ammeter which is identical to that in a surface of theC ti it ti

  0/  tDJ


0/  Jt




the ammeter, which is identical to that in a surface of the 

active region.
Continuity equation

( ) ( )S SI t I t
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2.2.1.- Our quantum Monte Carlo algorithm: The Bittles simulator

Quantum Monte Carlo simulation for electron transport

,, 1 1
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G-distribution: 
initial position of Bohmian trajectory

Monte Carlo Casino (MONACO)

H-distribution: 
initial energy of the wave-packet
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(Stationary and ergodic system)
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(Stationary and ergodic system)
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2.2.2.- Our quantum Monte Carlo algorithm: DC current

DC current for a Resonant Tunneling Device (RTD)g ( )

In the 80’s, engineers expected that RTDs would substitute the FET transistor

Now it is a very useful scenario to understand QM phenomena at the nanoscale

30

Now, it is a very useful scenario to understand QM phenomena at the nanoscale.



2.2.2.- Our quantum Monte Carlo algorithm: DC current

DC current for a Resonant Tunneling Device (RTD)
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[G. Albareda et al. Phys. Rev. B 79, 075315 (2009)]
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We include many-particle interaction effects on the current. 



2.2.3.- Our quantum Monte Carlo algorithm:  current fluctuations

Quantum Noise:                                                                  
I(t)

( )I ( ) ( )I I I ( )C ( )S( )I t ( ) ( )I t I t I   ( )IC  ( )IS w

Fluctuations Autocorrelation Fourier transform

Engineers do not like noise, it makes errors in the device. 

Physicist enjoy noise, because it shows phenomena that are not shown in DC

( 0)IS wFano Factor F
I
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2.2.3.- Our quantum Monte Carlo algorithm:  current fluctuations

Effect of Coulomb correlation on current and noise [X.Oriols, APL,85, 3596 (2004)]
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2.2.4.- Our quantum Monte Carlo algorithm:  transient and AC current

Time dependent (particle + displacement) current
[A Alarcon JSTM 2009(P01051) (2009)]

tDJH c  /
   0/  tDJc


Continuity equation

[A. Alarcon, JSTM, 2009(P01051) (2009)]

 D


0/  cJt



Poisson equation
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2.2.4.- Our quantum Monte Carlo algorithm:  transient and AC current

Transit simulation: [G. Albareda et al. Phys. Rev. B, 82, 085301  (2010)]

,
1( ) lim ( )
·

g h

h

N N

g hN N
I t I t

N N
   Non-ergodic system (ensemble average):
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3.- Conclusions and future work

We have presented a algorithm to compute many-particle Bohmian trajectoriesWe have presented a algorithm to compute many-particle Bohmian trajectories. 

1.-We have shown the existence of a single-particle Schrodinger equation 
th t t ti l B h i t j tthat computes a many-particle Bohmian trajectory. 

2.- Its practical application needs an educated guess on the potentials. 

We apply the previous algorithm to a many-particle quantum MC simulator pp y p g y p q
for computing electron quantum transport

We are able to compute DC, AC, transients and (current and voltage) noise 
ith l t l t l tiwith electron-electron correlations. 

Simulation time 1-2 days  for a complete I-V curve (N=100 electrons)
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3.- Future work

The  BITLLES Simulator

Bohmian Interacting Transport in Electronic Structures

We have a three years project by the Ministerio de Ciencia e Innovación to

38

We have a three years project by the Ministerio de Ciencia e Innovación to 
develop the BITLLES simulator through project TEC2009-06986.



3.- Future work

• This book provides the first comprehensive discussion on the 
practical application of Bohmian ideas in several forefront research 
fields written by leading experts, with an extensive updated 
bibliography. 

• This book provides a didactic introduction to Bohmian mechanics 
easily accessible for graduate and undergraduate students including aeasily accessible for graduate and undergraduate students including a 
thorough list of exercises and easily programmable codes. 

The book is addressed to students in physics chemistry electrical

Readership

The book is addressed to students in physics, chemistry, electrical 
engineering, applied mathematics, nanotechnology, as well as both 
theoretical and experimental researchers who seek an intuitive 
understanding of the quantum world and new computational tools for 
their everyday research activity. 

978-981-4316-39-2 
Cloth, 400 pages (approx.) 
Fall 2011, US$149 

You can place an order from any good bookstores or email 
us at sales@panstanford.com for more information. 

How to order
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3.- Conclusions and future work
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