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1. MAIN IDEAS

Qualitative non-technical arguments, relaxed discussion
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It is frequently argued that:

1. Bohmian mechanics (BM) contradicts the theory of relativity

(because BM is nonlocal)

2. BM based on particle trajectories is not consistent with

particle creation/destruction in QFT

(because particle trajectories are continuous in BM)

The purpose of this talk is to show that BM can be formulated

such that:

- BM is nonlocal but relativistic covariant

- BM with continuous particle trajectories describes

particle creation/destruction in QFT
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1.1 Relativistic Bohmian interpretation

- Nonlocality in BM requires superluminal (faster than light)

communication between particles.

- The most frequent argument that it is not compatible with relativity:

Superluminal communication

⇒ there is a Lorentz frame in which communication is instantaneous

⇒ there is a preferred Lorentz frame

⇒ the principle of relativity is violated.

- However, this is not a valid argument, because

this is like using the following argument on subluminal communication:

Subluminal communication

⇒ there is a Lorentz frame in which particle is at rest

⇒ there is a preferred Lorentz frame

⇒ the principle of relativity is violated.
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The argument on subluminal communication is wrong:

- It is the general law of motion that must have the same form

in any Lorentz frame.

- A particular solution (a particle at rest with respect to some particular

Lorentz frame) does not need to have the same form

in all Lorentz frames.

But the argument on superluminal communication is

completely analogous.

⇒ It is wrong for exactly the same reason:

- A particular solution (communication instantaneous with respect to

some particular Lorentz frame) does not need to have the same form

in all Lorentz frames.
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This analogy works if one exchanges the roles of time and space.

- Is it compatible with the principle of causality?

It depends on what exactly one means by principle of causality.

- It is compatible with determinism

(all events are caused by some “prior” events).

- However, due to the superluminal influences,

“prior” does not always need to mean “at an earlier time”.

But then what “prior” means?

For n particles, the trajectories in spacetime are functions

Xµ
a (s), a = 1, . . . , n, µ = 0,1,2,3

µ - spacetime index, a - labels a particle

s - auxiliary scalar parameter that parameterizes particle trajectories

(generalizes the notion of proper time)

⇒ “prior” means - at an earlier s.
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Example: (3 particles, 1+1 spacetime dimensions)

s=0

s=0

s=0

s=1 s=1

s=1

s=2

s=2

s=2

x

x    1

    0

X
µ
a (s = 0) is arbitrary (initial condition)

“Instantaneous” means: for the same s ⇒ no preferred Lorentz frame
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Particles can move faster than light and backwards in time.

How can it be compatible with observations?

One must take into account the theory of quantum measurements:

When velocity is measured, then velocity cannot exceed the velocity

of light.

More generally:

General theory of quantum measurements ⇒ all statistical predictions

coincide with those of purely probabilistic interpretation of QM.

Crucial assumptions:

- spacetime positions are preferred variables

- all measurements reduce to measurements of spacetime positions

(that describe the reading of macroscopic measurement apparatus)
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Relativistic probabilistic interpretation (for preferred variables):

- main idea: treat time on an equal footing with space

1. Generalized probabilistic interpretation:

Space probability density

dP(3) ∝ |ψ(x, t)|2d3x

generalized to spacetime probability density

dP(4) = |ψ(x, t)|2d3x dt

The usual space probability density recovered as conditional probability.

Relativistic notation: t ≡ x0, x ≡ (x1, x2, x3)

x ≡ {xµ} ⇒ ψ(x, t) ≡ ψ(x)
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2. Many-time formalism:

n-particle wave function with a single time

ψ(x1, . . . ,xn, t)

generalized to

ψ(x1, t1, . . . ,xn, tn) ≡ ψ(x1, . . . , xn)

The single-time formalism recovered in the coincidence limit

t1 = · · · = tn = t.
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Spacetime probability resolves the equivariance problem:

Equivariance problem (Berndl, Dürr, Goldstein, Zangh̀ı, 1996):

- Nonrelativistic equivariance equation:

∂|ψ|2
∂t

+ ∂i(|ψ|2ui) = 0, i = 1,2,3

(here ui(x) is the Bohmian 3-velocity at x)

- Not satisfied for relativistic ψ satisfying Klein-Gordon equation.

- From this, they conclude that |ψ|2 cannot be probability density

in relativistic BM.

- However, this equivariance equation does not treat time

on an equal footing with space.

- Violation of this equivariance equation only shows

that |ψ|2 cannot be probability density in space.
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⇒ Instead of nonrelativistic equivariance equation

∂|ψ|2
∂t

+ ∂i(|ψ|2ui) = 0, i = 1,2,3

probability density in spacetime requires

Relativistic equivariance equation:

∂|ψ|2
∂s

+ ∂µ(|ψ|2vµ) = 0, µ = 0,1,2,3

(here vµ(x) is the Bohmian 4-velocity at x), which

- is satisfied when ψ satisfies Klein-Gordon equation

- treats time on an equal footing with space.

Physically, it means that probability is not conserved in t,

but is conserved in s.
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But what is s physically?

Can it be measured by a “clock”?

Analogy between nonrelativistic t and relativistic s:

t - external parameter in nonrelativistic (3-dimensional) mechanics

s - external parameter in relativistic (4-dimensional) mechanics.

s can be measured indirectly by “clock” in relativistic mechanics

in the same sense as

t can be measured indirectly by “clock” in nonrelativistic mechanics.

A “clock” is a physical process periodic in “time” (t or s):

- One measures the number of periods,

and then interprets it as a measure of elapsed “time”.

⇒ s is a relativistic analogue of Newton absolute time.
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1.2 Particle creation and destruction

Main idea:

Even if particle trajectories never begin or end, the measuring

apparatus behaves as if particles are created or destructed.

ψ1(x1) = 1-particle wave function

ψ2(x2, x3) = 2-particle wave function

Superposition:

ψ(x1, x2, x3) = ψ1(x1) + ψ2(x2, x3)

How can one detect a definite number of particles (either 1 or 2)?

- When the number of particles is measured,

then the system is entangled with the measuring apparatus ⇒
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Total wave function:

Ψ(x1, x2, x3, y) = ψ1(x1)E1(y) + ψ2(x2, x3)E2(y)

Apparatus wave functions do not overlap:

E1(y)E2(y) ≃ 0

⇒ Y is either in the support of E1(Y ) or in the support of E2(Y ).

In other words, the detector either says:

- There is 1 particle.

or says:

- There are 2 particles.

But what happens with undetected particles?

Can they be detected later?
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Assume that Y is in the support of E2(Y )

⇒ effective collapse:

Ψ(x1, x2, x3, y) → ψ2(x2, x3)E2(y)

- The trajectory of the undetected particle X1(s) has a negligible

influence on the detector particles Y (s),

as well as on detected particles X2(s), X3(s).

⇒ For all practical purposes, the particle X1(s) behaves

as if it does not exist.

But can it be detected later?

- In principle yes, if E1(y) and E2(y) overlap later.

- Yet, once E1(y) and E2(y) cease to overlap,

it is extremely unlikely that they will overlap later.

- This is because disorder increases with time (2nd law of thermodyn.)

- Essentially, this is the same mechanism that is responsible for

irreversibility of decoherence.
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The general mechanism of particle creation/destruction:

Step 1: Deterministic evolution of the state in interacting QFT:

|ninitial〉 →
∑

n
cn|n〉

Step 2: Entanglement with the environment:
[

∑

n
cn|n〉

]

|Einitial〉 →
∑

n
cn|n〉|En〉

En(y)En′(y) ≃ 0 for n 6= n′

Step 3: Bohmian interpretation ⇒ Y (s) enters only one Enfinal
(y)

⇒ effective collapse:

∑

n
cn|n〉|En〉 → |nfinal〉|Enfinal

〉

Summary: |ninitial〉|Einitial〉 → |nfinal〉|Enfinal
〉
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2. TECHNICAL DETAILS

To fill the gaps in the preceding qualitative arguments
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2.1 Relativistic probabilistic interpretation

Spacetime point: x = {xµ} = (x0, x1, x2, x3)

[x0 ≡ t, (x1, x2, x3) ≡ x]

Units: h̄ = c = 1

Spacetime scalar product:

〈ψ|ψ′〉 =
∫

d4xψ∗(x)ψ′(x)

Normalization: 〈ψ|ψ〉 = 1

→ probabilistic interpretation:

dP = |ψ(x)|2d4x

Is it compatible with the usual probabilistic interpretation

dP(3) ∝ |ψ(x, t)|2d3x ?
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It is compatible:

- If dP is fundamental a priori probability

⇒ dP(3) is conditional probability

(when one knows that the particle is detected at time t):

dP(3) =
|ψ(x, t)|2d3x

Nt

Nt =
∫

d3x|ψ(x, t)|2

Nt = marginal probability that the particle will be found at time t

- If t is not known ⇒
∫

d3x |ψ|2 = probability per unit time.

- That’s how QM is interpreted in standard calculations

of cross sections (scattering) and lifetimes (spontaneous decay).
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Generalization to many particles:

dP = |ψ(x1, . . . , xn)|2d4x1 · · · d4xn
If first particle detected at t1, second particle at t2, ...

⇒ conditional probability:

dP(3n) =
|ψ(x1, t1, . . . ,xn, tn)|2d3x1 · · · d3xn

Nt1,...,tn

Nt1,...,tn =
∫

|ψ(x1, t1, . . . ,xn, tn)|2d3x1 · · · d3xn

Usual single-time probabilistic interpretation in the limit

t1 = · · · = tn ≡ t.
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2.2 Quantum theory of measurements

Measured system:

ψ(x) =
∑

b

cbψb(x)

ψb(x) = eigenstates of some measured observable (hermitian operator)

- normalization:
∫

d4xψ∗
b(x)ψb(x) = 1

|cb|2 = probability that the observable will have the value b.

Probability in b-space can be derived from probability in position-space.

- Reason: every macroscopic measurement apparatus

actually determines position y of some macroscopic variable.
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States Eb(y) of measuring apparatus do not overlap:

Eb(y)Eb′(y) ≃ 0 for b 6= b′

Normalized:
∫

d4y E∗
b(y)Eb(y) = 1.

Measurement (deterministic evolution):

ψb(x)E0(y) → ψb(x)Eb(y)

Linearity ⇒ entanglement with the measuring apparatus:

∑

b

cbψb(x)E0(y) →
∑

b

cbψb(x)Eb(y) ≡ ψ(x, y)

Marginal probability for finding apparatus-particle at the position y:

ρ(y) =
∫

d4xψ∗(x, y)ψ(x, y) ≃
∑

b

|cb|2|Eb(y)|2

⇒ probability that y will be in the support of Eb(y):

pb =
∫

suppEb
d4y ρ(y) ≃ |cb|2

Q.E.D.

24



2.3 Wave equation and the Bohmian interpretation

System of n (entangled) relativistic spin-0 particles:

⇒ n-particle Klein-Gordon equation:

n
∑

a=1

[∂µa∂aµ +m2
a]ψ(x1, . . . , xn) = 0

Bohmian interpretation: particles have some trajectories X
µ
a (s)

s = auxiliary scalar parameter.

Complex wave function: ψ = |ψ|eiS
Klein-Gordon equation ⇒ relativistic equivariance equation:

∂|ψ|2
∂s

+
n

∑

a=1

∂aµ(|ψ|2vµa) = 0

vµa(x1, . . . , xn) ≡ −∂µaS(x1, . . . , xn)
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⇒ consistent to postulate equation for the trajectories:

dX
µ
a (s)

ds
= vµa(X1(s), . . . , Xn(s))

If a statistical ensemble of particles has the spacetime distribution |ψ|2
for some initial s ⇒(due to equivariance equation):

The ensemble will have the |ψ|2 distribution for any s.

Nonlocality: velocity of one particle (for some value of s)

depends on the positions of all other particles (for the same value of s).

Relativistic covariance: no a priori preferred coordinate frame

is involved.
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Compatibility between Bohmian interpretation

and probabilistic interpretation of QM:

- both have same statistical predictions in spacetime-position space.

- general theory of quantum measurements - reduces all measurements

to spacetime-position measurements.

⇒ both have same statistical predictions for any measurement.
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2.4 Particles with spin

Wave function has many components.

For 1 particle:

ψ(x) → ψl(x), l = discrete label

For n particles:

ψl1...ln(x1, . . . , xn) ≡ ψL(x1, . . . , xn)

Notation:

ψ =







ψ1
ψ2
...






, ψ† =

(

ψ∗
1 ψ∗

2 · · ·
)

Probability density:

dP = ψ†(x1, . . . , xn)ψ(x1, . . . , xn)d
4x1 · · · d4xn
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Example: 1 particle with spin-12

dP = ψ†(x)ψ(x)d4x

⇒ ψ†ψ must be a scalar.

On the other hand, it is well-known that

ψ†ψ = ψ̄γ0ψ is a time component of a vector

where γµ = Dirac matrices, ψ̄ ≡ ψ†γ0.

Is it consistent?

Yes, because there is some freedom in the definition of

transformations of spinors under change of spacetime coordinates.

The most frequent definition:

ψ - transforms as a spinor, γµ does not transform.

- Suitable only for Lorentz transformations in flat spacetime.
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We adopt a less frequent, but more suitable definition:

ψ - does not transform (scalar), γµ transforms as a vector

- the usual fixed Dirac matrices denoted by γµ̄ ⇒ ψ̄ ≡ ψ†γ0̄ is scalar

- suitable for arbitrary coordinate transformations

in arbitrary spacetime

- widely used in curved spacetime

- in flat spacetime there is a Lorentz frame in which γµ = γµ̄

- ψ̄ψ and ψ†ψ are both scalars under coordinate transformations

- the usual spinor transformations of ψ reinterpreted as transformations

under internal group SO(1,3)

Dirac current:

j
µ
Dirac

= ψ̄(x)γµψ(x)

Klein-Gordon current:

jµ =
i

2
ψ†(x)

↔
∂µψ(x)

- both transform as vectors
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Bohmian interpretation for particles with spin:

For spin-0, Bohmian velocity

dX
µ
a (s)

ds
= −∂µaS(X1(s), . . . , Xn(s))

equivalent to

dX
µ
a (s)

ds
= V µa (X1(s), . . . , Xn(s))

where

V µa =
j
µ
a

ψ∗ψ
, jµa =

i

2
ψ∗↔∂µa ψ

ψ1

↔
∂µa ψ2 ≡ ψ1(∂

µ
aψ2) − (∂µaψ1)ψ2
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Generalization for particles with spin: ψ∗ → ψ†

dX
µ
a (s)

ds
= V µa (X1(s), . . . , Xn(s))

V µa =
j
µ
a

ψ†ψ
, jµa =

i

2
ψ†↔∂µa ψ

For any spin: ψ satisfies the (n-particle) Klein-Gordon equation ⇒
n

∑

a=1

∂aµj
µ
a = 0

ψ(x1, . . . , xn) does not explicitly depend on s ⇒

∂ψ†ψ
∂s

= 0

⇒ Equivariance:

∂ψ†ψ
∂s

+
n

∑

a=1

∂aµ(ψ
†ψV µa ) = 0

⇒ Bohmian trajectories consistent with probabilistic interpretation.
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2.5 Free QFT states represented by wave functions

For simplicity, discuss only hermitian fields without spin

(generalization to other fields is straightforward).

Klein-Gordon equation for field operator:

∂µ∂µφ̂(x) +m2φ̂(x) = 0

General solution:

φ̂(x) = ψ̂(x) + ψ̂†(x)

ψ̂(x) =
∫

d3k f(k) â(k)e−i[ω(k)x0−kx]

ψ̂†(x) =
∫

d3k f(k) â†(k)ei[ω(k)x0−kx]

ω(k) =

√

k
2 +m2

â†(k) - creation operator

â(k) - destruction operator

33



Operator that destroys n particles:

ψ̂n(xn,1, . . . , xn,n) = dnS{xn,1,...,xn,n}ψ̂(xn,1) · · · ψ̂(xn,n)

dn - normalization

S{xn,1,...,xn,n} - symmetrization

The n-particle states in the basis of particle spacetime positions:

|xn,1, . . . , xn,n〉 = ψ̂†
n(xn,1, . . . , xn,n)|0〉

For arbitrary n-particle state |Ψn〉, the wave function is

ψn(xn,1, . . . , xn,n) = 〈xn,1, . . . , xn,n|Ψn〉

Normalization:
∫

d4xn,1 · · ·
∫

d4xn,n |ψn(xn,1, . . . , xn,n)|2 = 1
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Problem: Wave functions for different n normalized in different spaces.

We want them all to live in the same space → different normalization:

Ψn(xn,1, . . . , xn,n) =

√

√

√

√

V(n)

V ψn(xn,1, . . . , xn,n)

where

V(n) =
∫

d4xn,1 · · ·
∫

d4xn,n, V =
∞
∏

n=1

V(n)

In particular, the wave function of the vacuum is constant:

Ψ0 =
1√
V

Condensed notation:

~x = (x1,1, x2,1, x2,2, . . .), D~x =
∞
∏

n=1

n
∏

an=1

d4xn,an

⇒ all wave functions normalized in the same space:
∫

D~x |Ψn(xn,1, . . . , xn,n)|2 = 1

35



To further simplify notation:

Condensed label: A = (n, an) ⇒ ~x = (x1, x2, x3, . . .)

D~x =
∞
∏

A=1

d4xA, V =
∫ ∞

∏

A=1

d4xA

n-particle state:

Ψn(~x) = (~x|Ψn〉
General state:

Ψ(~x) = (~x|Ψ〉 =
∞
∑

n=0

cnΨn(~x) ≡
∞
∑

n=0

Ψ̃n(~x)

Normalization:
∫

D~x |Ψ(~x)|2 = 1

∞
∑

n=0

|cn|2 = 1

⇒ In QFT, general wave function depends on an infinite number

of coordinates.
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2.6 Generalization to interacting QFT

- operators in the Heisenberg picture:

ÔH(x) - satisfy exact equations of motion

- operators in the interaction picture:

Ô(x) - satisfy free equations of motion

Operator that destroys n particles:

ψ̂nH(xn,1, . . . , xn,n) = dnS{xn,1,...,xn,n}ψ̂H(xn,1) · · · ψ̂H(xn,n)

n-particle wave function:

ψ̃n(xn,1, . . . , xn,n) = 〈0|ψ̂nH(xn,1, . . . , xn,n)|Ψ〉
Represent all wave functions in the same configuration space:

ψ̃n(xn,1, . . . , xn,n) → Ψ̃n(~x)
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Total state:

Ψ(~x) =
∞
∑

n=0

Ψ̃n(~x)

- Encodes complete information about properties

of the interacting system.

In practice, one cannot calculate it exactly, but only perturbatively:

ψ̂H(xn,an) = Û†(x0n,an)ψ̂(xn,an)Û(x0n,an)

Û(t) = Te
−i

∫ t
t0
dt′Ĥint(t

′)

⇒ perturbation theory by expansion in the powers of Ĥint.

In the coincidence limit x0n,1 = · · · = x0n,n ≡ t→ ∞
⇒ reduces to the usual S-matrix theory in QFT.
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2.7 Bohmian interpretation of QFT

Probability density of particle spacetime positions:

ρ(~x) = Ψ†(~x)Ψ(~x)

The current

J
µ
A(~x) =

i

2
Ψ†(~x)

↔
∂
µ
AΨ(~x) ≡ ρ(~x)U

µ
A(~x)

in general is not conserved:

∞
∑

A=1

∂Aµ[ρ(~x)U
µ
A(~x)] = J(~x)

For Bohmian trajectories

dX
µ
A(s)

ds
= V

µ
A( ~X(s))

we need equivariance

∂ρ(~x)

∂s
+

∞
∑

A=1

∂Aµ[ρ(~x)V
µ
A(~x)] = 0
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⇒ we need conservation

∞
∑

A=1

∂Aµ[ρ(~x)V
µ
A(~x)] = 0

The solution is

V
µ
A(~x) = U

µ
A(~x) + ρ−1(~x)[e

µ
A + E

µ
A(~x)]

where

e
µ
A = −V−1

∫

D~xEµA(~x)

E
µ
A(~x) = ∂

µ
A

∫

D~x′G(~x, ~x′)J(~x′)

G(~x, ~x′) =
∫ D~k

(2π)4ℵ0

ei
~k(~x−~x′)

~k2
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CONCLUSIONS

- The usual formulation of BM is not relativistic covariant because

it is based on standard QM which is also not relativistic covariant.

- To make BM covariant ⇒ first reformulate standard QM

in a covariant way!

⇒ Treat time on an equal footing with space:

1. space probability density → spacetime probability density

2. single-time wave function → many-time wave function

- To make particle BM compatible with QFT and particle/destruction:

1. Represent QFT states with wave functions

(depending on an infinite number of coordinates).

2. Use quantum theory of measurements ⇒
effective collapse into states of definite number of particles.
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Thank You!
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