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Why is the standard interpretation of QM 
unsatisfactory?

- No description of the actual reality at the microscopic 
level

- Measurement problem

- exponential growth of resources in the definition of 
the state



Exponential growth

M lattice points for each coordinate

Classical analogy:
multi-particle probability distribution 
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quantum vs classical mechanics and
exponential complexity

Quantum  Classical

Ensemble description:               (x1,..,xN) (x1, p1,..,xN, pN)

Single system description: ?  {x1, p1,..,xN, pN}

-The lacking of a single system description in QM implies that a 
exponentially growing number of resources is necessary to define a 
state

This does not occur in the classical single system description: the 
number of variables scales as the number of particles



Ontological theories of QM

An ontological theory provides a description of a single system by 

means of well-defined variables

->(X| )

X set of ontological variables (continuous and/or discrete). 



Quantum state: complete information about the 
probability of any event.

Ontic state: information about the actual state of a 
single system

Inf. ontic state < Inf. quantum state?



examples of ontological theories:   

- Beltrametti-Bugajski model

- Bohm-de Broglie mechanics

In any known exact ontological theory the wave-function is promoted 
to the rank of a real field-> The number of ontological resources 
grows exponentially!

Is this promotion necessary? Is it possible to reduce the number 
of required resources in order to define the state of a single system?   

A. Montina, arXiv:quant-ph/0604155.



Why this question is not trivial?
Example:  the ontological space contains S ontic states

For each quantum state, only an ontic state is populated with 
probability = 1

Only S quantum states can be represented by the ontic space. The 
ontic state set and the set of represented quantum states must 
have the same cardinality.
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The probability distribution (n|) is not delta-peaked

The number of quantum states one may represent is in principle much
larger than S.

The dimensional reduction of the ontic space might be possible

......... 
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Second example: 



A first constraint for the ontological space size:
L. Hardy’s “excess baggage theorem”.

The number of ontic states required to represent a finite dimensional 
Hilbert space can not be finite. 

However, this result does not imply that the ontic space dimension 
can not be smaller than the Hilbert space dimension

(a 1D ontic space has infinite elements).

The dimensional reduction of the ontic space is not forbidden by 
Hardy’s theorem



The set of ontic states is infinite, but is it countable or has 
the cardinality of continuum?

and, if the ontic space is continuous, what is its dimension?

In order to provide a more restrictive constraint, I used an 
additional hypothesis:

the dynamics has short memory (is Markovian).



A more restrictive theorem 
(Montina PRA, 2008)

In ANY ontological Markovian (deterministic or stochastic) theory of 
QM, the ontological variables contain a field  whose space is 
isomorphic to the Hilbert space. The dynamics of this field is 

described by the Schrodinger equation:

Markovian process: it is a short memory process 
(deterministic or stochastic). 
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Consequence

The exponential growth of resources required to describe a system is 
not due to the ensemble description of the standard formulation, but 

it is intrinsic of ANY realistic Markovian theory of quantum 
mechanics.



Constructive result

We can reverse the theorem: in order to avoid the 
exponential growth, we could discard one of the theorem 

hypotheses, as the 
Markovian hypothesis.



Ontological model for state 
preparation-measurement processes



Bob Alice

 

Event

- Bob generates |> and sends to Alice a classical variable X with 
probability (X|).

- Alice uses X to generate the event |><| with probability 
P(|X).

- The probability of |><|  given |> is 

2
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Trivial scheme: Bob sends all the information about |>.
Alice uses the Born rule to generate the event.
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ontological model with ontic space shrinking
for a qubit

-The quantum state manifold is 2 dimensional 
(Bloch sphere), but the ontological space is 1 
dimensional! (ontic shrinking).
(the Kochen-Specker ontological space is 2 
dimensional).

-The dynamics of the probability distribution is not 
described by a positive conditional probability 
(non-Markovian dynamics)
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x<acos(3/5)53.13 degrees



- The model works for a cone of states on the Bloch 
sphere with symmetry axis z

Generalizing the model to any preparation state

(....)),,( )(, vfmvmnx 


 

Discrete index



Higher Hilbert space dimension
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Monte Carlo Method

Ontological model:

Quantum state:
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Growing the region of positivity of 
the model

Perturbative corrections:
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Conclusion and perspectives

- Constraint on the ontological space dimension in Markov 
ontological theories. 

- Economical ontological model of a state preparation-
measurement process for a qubit

- Generalization to a N-dimensional Hilbert space, working for a 
subset of quantum states and measurement.

- Searching for an ontological model working for any state and 
measurement

- Issues on the dynamics (long memory dynamics or non-causal 
theory?)


