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Stochastic mechanics - Background 

•  Formal analogies between QM and stat. mech. well-known. 
•  Ex: Schrödinger eq. and diffusion eq. related by Wick rotation. 
•  Suggestive of possibly deeper correspondence. 

Q: Can QM be embedded within a classical theory of Brownian motion? 

•  Stochastic mechanics (SM): 
 (Fenyés, Nelson, Guerra, Yasue, Morato, Davidson, Nagasawa) 



Nelson: I 

•  Stochastic differential eq. for x(t): 

•  Wiener noise: 

•  Diffusion coefficient: 

dx(t) = b(x,t)dt + dW(t)

dx(t) = b*(x,t)dt + dW*(t)

Et dW[ ] = 0, Et dWidWj⎡⎣ ⎤⎦ = 2υδ ijdt

 
υ =


2m



Nelson: II 
•  Fokker-Planck (FP) eqs. for ρ(x,t): 

•  Subtract FP’s to get ‘osmotic velocity’: 

•  Assume osmotic potential field R(x,t): 

 
u = 

2m
∇ρ
ρ

=
1
2
b − b*[ ]

 

∇R
m

=

2m

∇ lnρ→ ρ = e2R 

 ∂tρ = −∇ • b*ρ( ) − 
2m∇

2ρ

 ∂tρ = −∇ • bρ( ) + 
2m∇

2ρ



Nelson: III	
  

•  Average FP’s to get continuity eq.: 

•  Assume ‘current velocity’: 

•  Then b = v + u and b*= v – u. 

∂tρ = −∇ • 1
2 b +b*[ ]ρ( )

v = ∇S
m

=
1
2
b + b*[ ]



Nelson: IV 

•  Stochastic derivatives: 

•  T-symmetric mean acceleration: 

 

D = ∂t + b •∇ + 
2m∇

2

Dx = b  

D* = ∂t + b* •∇ − 
2m∇

2

D*x = b

d 2x
dt 2

=
1
2
D*D + DD*( )x = − ∇V

m
↓

∇ ∂tS +
∇S( )2
2m

+V +Q
⎛

⎝⎜
⎞

⎠⎟
= −

∇V
m



Nelson: V 
•  Modified (quantum) Hamilton-Jacobi eq.: 

•  Hamilton-Jacobi-Madelung (HJM) eqs.: 

          & 

           
•  SE: 

−∂tS =
∇S( )2
2m

+V +Q,

−∂tS =
∇S( )2
2m

+V +Q, ∂tρ = −∇ •
∇S
m

ρ⎛
⎝⎜

⎞
⎠⎟

 
i∂tψ = −

2

2m
∇2ψ +Vψ ,  ψ = ρeiS 

 
Q = −

2

2m
∇2 ρ

ρ
=
1
2
mu2 − m 

2m
∇ • u



Contrast SM with deBB 
•  SM	
  ψ is derived and epistemic, not fundamental and ontic. 

•  Guiding eq. not exact but mean velocity: 

•  S and ρ both required for particle dynamics (e.g. b = v + u). 

•  Newton’s 2nd law required for particle dynamics (HJM eqs.). 

•  Probability density ρ not a physical force field, even though used in 
osmotic velocity and quantum potential definition. 

•  SM undercuts Deustch/Wallace/Brown claim of “many-worlds in 
denial”, even in quantum equilibrium case.  

v = ∇S
m

=
1
2
b + b*[ ]



The phase-quantization problem: I 

•  AKA “Wallstrom’s criticism”. 

•  But first recognized by Takabayasi (’52). 

•  SE of QM and HJM not equivalent unless impose “ad-hoc” 
Bohr-Sommerfeld-Wilson (BSW) quantization condition:  

•  Nelson relies on assumed equivalence between HJM and SE. 

•  But Nelson did not require BSW condition on his S. 

 
∇Sidl

L∫ = nh⇔ dφQML∫ = 2πn



The phase-quantization problem: II	
  

•  Wallstrom (‘88, ‘94): 

1.  If S single-valued, ψ single-valued -   
  excludes ψ’s with quantized angular momentum factors like exp[imφ]. 

2.  If S arbitrarily multi-valued, ψ multi-valued - 
  have ψ’s with non-quantized angular momentum (e.g. 2-d 

central potential). 

3.  True in simply-connected configuration spaces. 

4.  True in 2-d or higher. 

5.  True of all formulations of SM. 

!  



The phase-quantization problem: III	
  

•  Wallstrom (‘94): 
 “In the context of stochastic mechanics, it is very 

difficult to see how the circulation of the current 
velocity might be quantized in a natural way … There 
seems  to be nothing in the particle-oriented world of 
stochastic mechanics which can lead to what is 
effectively a condition on the ‘wave function’.” 



Proposed solutions: I	
  
•  Carlen & Loffredo (‘89): 

–  Introduce SM analog of BSW condition on multiply-connected S1. 
–  Relate in natural way to topological properties of S1. 
–  Then QM and SM equivalent on multiply-connected S1. 

•  Wallstrom (‘94): 
–  Interpret HJM as equations for compressible fluid. 
–  Then BSW quantization is initial condition conserved in time via Kelvin’s 

circulation theorem. 

•  Smolin (‘06): 
–  Considers QM and SM on S1. 
–  Asserts that multi-valued and discontinuous ψ obtained from SM on S1 is 

in L2(S1) and thus solution of SE. 
–  Claims no reason why ψ can’t be multi-valued. 
–  Suggests argument for S1 generalizes to higher dimensions. 



Proposed solutions: II	
  

•  Carlen & Loffredo (‘89): Need BSW condition in simply-
connected space of 2-d or higher. 

•  Wallstrom (‘94): No known physical justification for assuming 
BSW condition as privileged initial condition. 

•  Smolin (‘06): 
–  Example on S1 artificial and trivial. 
–  Wallstrom problems arise in simply-connected spaces of 2-d or higher. 
–  Physical ψ’s must be single-valued or else QEV of KE diverges at nodes of 

multi-valued ψ (Valentini). 
–  Multi-valued ψ implies non-quantized energy and angular momentum 

(contradicts experimental facts). 



Classical Zitterbewegung (ZBW): I	
  
•  Bohm (’57): Assume particle in rest frame oscillates with 

constant frequency ω0. Then 

•  Lorentz transform: 

•  If m = me and (ω0/mec2) = 1/ħ then ω0 = ωc (Zitterbewegung). 

δφ0 t( ) =ω0δt0

 

δφ0 x,t( ) =ω0γ δt − viδx c2( )
=

ω0

mc2
γmc2δt − γmviδx( )

=
ω0

mc2
Eδt − piδx( )



Classical Zitterbewegung: II	
  

• #

•  Since ϕ continuous function of x and t, and oscillation is 
simply harmonic,  

 which is BSW condition for time held fixed. 

 δS0 x,t( ) = Eδt − piδx

 

δφ0 (x,t)L∫ = 2πn

↓

δS0 (x,t)L∫ = nh



Classical Zitterbewegung: III	
  
•  In NR limit v << c, 

•  S satisfies classical HJ eq. (neg. mc2) : 

•  If ZBW particle position not known, have ρ(x,t) over fictitious Liouville 
ensemble of identical ZBW particles and 

•  S now function on spacetime since also function over fictitious ensemble. 

•  L in BSW condition now over momentum field for fictitious ensemble.  

 S x,t( ) = −S0 x,t( ) = mvix − mc2 + p2 2m⎡⎣ ⎤⎦,  
v = ∇S

m
=
k
m

−∂tS =
∇S( )2
2m

∂tρ = −∇ •
∇S
m

ρ⎛
⎝⎜

⎞
⎠⎟



Digression: De Broglie 

•  Used equivalent argument (‘23) involving “phase waves”. 

•  Phase waves carried no energy-momentum, thus were non-
physical or “non-material”. 

•  De Broglie speculated phase waves may be resonant EM waves. 

•  Phase waves were precursor to pilot waves. 

•  But phase waves not necessary for BSW quantization argument. 



Incorporating stochastic mechanics: I 
•  Assume Nelson’s noise field interacts with ZBW particle. 
•  In instantaneous rest frame defined by Nelson’s noise field, 

ZBW particle undergoes Brownian motion with no drift: 

•  Define mean rest frame as Et[dx] = Et[dW] = 0.  
•  Then mean ZBW phase is constant in space:  
•  Lorentz transform to mean fixed frame with mean velocity v: 

dx = dW

S t( ) = mc2t.

 
S x,t( ) = mvix − mc2 + p2 2m⎡⎣ ⎤⎦, v = ∇S

m
,

 
δS(x,t)

L∫ = nh

−∂t S =
∇S( )2
2m

, ∂tρ = −∇ •
∇S
m

ρ⎛
⎝⎜

⎞
⎠⎟



Incorporating stochastic mechanics: II	
  

•  Thus, in instantaneous fixed frame, 

•  Now assume in instantaneous fixed frame some R(x,t) imparts 
osmotic velocity to ZBW particle (in addition to v) where 

•  Then  

dx = vdt + dW

 
u = ∇R

m
=

2m

∇ lnρ→ ρ = e2R 

dx = v + u( )dt + dW,
dx = v − u( )dt + dW*,

b = v + u

b* = v − u



Incorporating stochastic mechanics: III	
  

•  Corresponding FP eq.’s: 

•  Subtract  

•  Add  

 ∂tρ = −∇ • bρ( ) + 
2m∇

2ρ,  ∂tρ = −∇ • bρ( ) + 
2m∇

2ρ

 
u = 

2m
∇ρ
ρ

=
1
2
b − b*[ ]

∂tρ = −∇ • vρ( )
↓

v = ∇S
m

=
1
2
b + b*[ ]



Incorporating stochastic mechanics: IV	
  

•  Stochastic derivatives and mean acceleration: 

 

D = ∂t + b •∇ + 
2m∇

2

Dx = b  

D* = ∂t + b* •∇ + 
2m∇

2

D*x = b

d 2x
dt 2

=
1
2
D*D + DD*( )x = − ∇V

m
↓

−∂t S =
∇S( )2
2m

+V +Q

 
S x,t( ) = mvix − p2 2m +V +Q⎡⎣ ⎤⎦



Incorporating stochastic mechanics: V	
  

•  V ≠ 0 contributes additional phase term to S.  

•  Q ≠ 0 implies that osmotic potential R contributes to ZBW 
phase S (i.e. they are physically coupled). 

•  BSW quantization still follows since S still continuous 
function of x and t and mean oscillation still simply harmonic. 

•  In formal ‘classical limit’, Q  0, recover classical HJ 
equations with BSW quantization condition. 



Open problems 

•  Extend ZBW model to obtain quantization condition for multi-
periodic motions (e.g. relativistic Kepler problem). 

•  Extend ZBW model to relativistic field theory. 

•  Find physical mechanism for ZBW oscillations. 

•  Use quantum nonequilibrium in SM with ZBW to predict 
breakdown of BSW quantization.  



Acknowledgments 

• Herman Batelaan (UNL). 

• Antony Valentini (Imperial and Clemson). 

• Mike Towler (Cambridge). 

• Dieter Hartmann (Clemson). 



Thanks for listening 



Ontology of SM with ZBW 

① ZBW particle with oscillating trajectory 
(described by phase S). 

② Stochastic noise field. 

③ Osmotic potential field on configuration 
space. 


