Meyal and Cllfford Algebras in
the Bohm Approach.

e - i

Basil J. Hiley




The Bohm Story Unfolded.

Classical physics.

Things go on in space-time. dynamics => phase space

p w1

I Particles or fields symplectic Particles . Fields
symmetry

wle. t)

Quantum physics.

Operators in
f

' : abandon phase space == :

I Fields P P Hilbert space

symplectic encoded in
Heisenberg group

Primitive Bohm approach.

p=V

Looks like a return to particles in phase space. =7 | Particles

Where has the symplectic symmetry gone?  Its there still!

Can also construct IParticleS and more!

r=-V,8




The Overarching Structure

Process, activity
Non-commutative

Algebraic structure. Holomovement

Implicate order.

AN

Shadow Shadow Shadow
Rhase sp'ace phase space phase space
(X'w(:c) , P'w(:c)) (qu(p),Pcb(p)) (X'f}(;g,)’P'r’(;g/))

Possible explicate orders.

[D. Bohm Wholeness and the Implicate Order (1980])




Some Mathematical Facts.

Covering group Sp*(2n) Covering group

Mp(2n) € Sp*(2n) Clifford group
spin group

Covering space

A

Classical

" Symplectic Orthogonal
phase space

group Sp(2n) group O(n)

Can we lift the classical properties on to the covering spaces?

[Souriau, Fond. Phys. 13 (1983) 113-151]




Dynamics, Symplectic Gl;?up.
Jio.

Start with classical mechanics.

If H 1s a function of ¢, (o, po, to)

H o :
f  © t a" = Je Hamiltonian groupoid

Motion is generated by Hamilton-Jacobi function S(z, z’, t,t’)
FH P(a',t')

Lift this onto a covering space. it
VU(z,1)

de Gosson has shown that F t{{, is Schrodinger

for all Hamiltonians. S(z,z',t,t')
1 / *x( ! /\(‘D,r t’)
Key object:-  p(z, 2", t) = 4" (', 1) (z, 1) P =-VS
(z,1)
Non-local object p=VS

What is this object and how does it develop in time?
[de Gosson, The Principles of Newtonian and Quantum Mechanics, 2001].
[de Gosson and Hiley, pre-print 2010]




The Two-point Density Matrix.

Start with p(z,z',t) = ¢¥*(z', t)¢(z, 1) P (2, p)
Go to p-space Y(z,t) = (2m)~" /é(Ps t)e'Pdp (z,p)
Pz t) = (2m)™ / / ¢ (p', )" ¢(p, t)e™™ ¥ dpdp’ X
Use X=(@+2z)/2 n=a'—z P=(p'+p)/2 7=p —p
Then p(-X yp t) = (27‘_) ? -/;[Gb‘ (P - 77/2, t)@(P <+ 77/2, t)(ilxrﬂ? Cmpdp
v
Write as p(X,n,t) = (2m)~1 /F(X, P, t)e"dp p(X,n,t) & F(X, P,t)

Sothat F(X,P,t)=(2m)"" /c’»"‘(P —m/2,t)e" X" G(P + m/2,t)dn .
: Wigner

= (2m)™! / V(X —n/2,t)e (X +n/2,t)dy  distribution
Try to use F(X,Pt) as a classical distribution function = negative probabilities
It is essentially a ‘density matrix’ in the (X, P) representation.

NB. It describes a ‘quantum blob’, not a classical particle.
Symplectic capacity




Quantum Phase space.
1. Change of representation = return to phase space of functions?

NB X and P are not coordinates of a simple particle. [X ; f’] =0
[Bohm and Hiley, Found. Phys. 11, (1981) 179-203]

2. Treat F'(X, P)as a quasi-probability density? =~ Don’t!!

3. We can generate a new non-commutative algebra of functions with a new product.

. g in/2(3x 3 p—9p B x) Moyal
F(X,P)xG(X,P)=F(X,P)e G(X,P) product
This product is non-commutative FxG#Gx*F
But it is associative Fx(GxH)=(F+«G)xF

We find that we can do quantum mechanics in the phase space without operators.

No operators in Hilbert space!

[Moyal, Proc. Camb. Phil. Soc. 45, 99-123, 1949.]
[Dubin,Hennings & Smith, Math. Aspects of Weyl Quantization, 2000]




Moyal * Multiplication is Matrix Multiplication.

Write in general
A(X, P,t) = (2m)~" / pa(X —1/2, X +n/2)e="Pdn
write as

A(X, P) = (2r)"" / A(X, m)e"Pdn
Then

A(X,P)«B(X,P)=C(X,P)
is equivalent to
COX —n/2,X +1/2) = [ AX = n/2,4)By, X +n/Ddy
Essentially matrix multiplication. NB Non-local.

For proof write

Ax=DB = //dr;dr;’fi(X -n/2, X +1/2)e inPei(dxTr-Frdx)g i”'Pl}(X —1'/2,X +1'/2)

[Cnockaert, Moyal’s Proc. Modave Summer School, 2005]




Properties of the Moyal *-Product?

Moyal bracket (commutator)

AxB—-B*xA

A, Blyp =
{4, Bhs =

2A(X, P) sing [‘5_\-5’,1 —Bx0 p] B(X, P)

Baker bracket (Jordan product or anti-commutator).

{A,B}pp = A*B;B*A =2A(X, P) COSZ [(5\5P ~3xdp B(X,P)

Deform to obtain classical limit.

Sine bracket becomes Poisson bracket.  {A,B}un = {A, B} pp + O(h*)

Cosine bracket becomes ordinary product {4, B}zs = AB + O(h?)

[Baker, dn., Phys. Rev. 109, (1958) 2198-2206.]




Quantum Dynamics.
Equation of motion for p(z,z’,t)

1(62 9?

% Ho— oH = _ V(e 2| ofz. 2
—zat—Hp pH—[ 572 8:1:2) V(.c)+V(.c)]p(.c,.c,t)

2m

Changing variables (z,z") — (X,n) we find

0 1 0 0
o = | ax an + VX =1/~ VX + 0/2)] o(X,7)
Write V(X) = /Vkeikxdk so that (X,P)

VX +0/2) = V(X,/2) = [ VieX (/2 — e/ ar

Use the Wigner-Moyal transformation — p(X,n,t) — F(X, P, t)

Finally

OF(X,Pt) , POF(X,P)

ot m ot +Z/L(P’P)F(X.~P)dp =0

AN

Non-local transformation.




The Two Wigner-Moyal Equations.
Define two equations of motion
H « F = i(2m)"! / e~y (z — /2, )00z + 1/2, t)dn
FxH= —z'(27r)_.1 /e‘""”’@n,b*(x —n/2,t)¥(z +n/2,t)dn

[T have written for simplicity 7] for hn ]

Subtracting gives Moyal bracket equation

‘ Classical Louville
tho F = {H,F}uB equation to O(h)

Adding gives Baker bracket equation
2{H,F}pp =i(2n) ' /c P [ (z — n/2,t)00(z +1/2,t) — 80" (x — n/2,t)U(z +n/2,t)] dn
=i(2m) " /c Pyt (z — /2, t)Ffb(.z: +1/2)dn

iS/h

Writing ¥ = Re we obtain




Classical Limit.

We find
G — O R(z + hnf2)  OR(z — fm/?)] i [6:5(1: +hn/2)  8.S(z — hn/2)
COPT R+ tm/2)  Re—hn/2) |7 S+ hnf2) ~ S(z—hn/2)

Expanding in powers of 7

oS
{H,F}pp = — 5+ O(R?)
, oS . . .
which becomes Fn +H=0 Classical Hamilton-Jacobi

Deformation again gives classical mechanics.

Two key equations
iho,F = {H,F}yB Quantum Liouville

oS
— +O(k?) = {H,F}Bgp Hamilton-Jacobi




Summary so far

1. We have constructed a non-commuting algebra in the covering structure
of classical phase space.

2. This reproduces all the standard results of quantum mechanics
3. We do not need operators in a Hilbert space.

4. This algebraic structure contains classical mechanics as a natural limit.

No fundamental role for decoherence

5. The structure is intrinsically non-local.

CM uses point to point transformations in phase space.

QM involve non-local transformations expressed through matrices

Basic unfolding and enfolding movements




A New Order:the Implicate Order.

Enfolding-unfolding movement

I After

= After "
° n-turns °

n-turns .
. anti-
clockwise .
@ clockwise

Spot reappears

- SO

Approximates Bohm trajectories?

M

Continuity of form not substance.

There are two types of order:-

Implicate order.
Explicate order.

[ Bohm, Wholeness and the Implicate Order, 1980]




Evolution of Process in the Implicate Order.

Continuity of form
eM,=M,e'
e,e, M, My € A
e'=M;'eM,

Evolution is an algebraic automorphism.
8 P What about /#?

Assume:-

M =M,=M M = exp|iHT] Just a scaling

T 1s the UNFOLDING PARAMETER. parameter

For small t

e'=(1-iHt)e(1+iHT)

de
I—=|H,e
)=He—eH 0T [ ]

Think of e as the density operator p. For pure states p is idempotent.

QUANTUM LIOUVILLE EQUATION OF MOTION.




Schrodinger Equation ?

If we write formally € =1%¢ and place in

de

d'r = [H.e]

We find

dy do

¢+ = (HY)¢ —(oH)

Now split into two equations

/
zcji—v = Hvy Schrédinger-like equation.
T
—z‘j—¢ = oH Conjugate equation.
-

Since € € A, what are \ and ¢ ?

[Baker, Phys. Rev. 6 (1958) 2198-2206.]




Minimal Ideals of the enfolding Algebra.
p=[U) (o] = V) (¢ = Yep =T, Vp
NB we use Dirac’s standard ket. ) € A

Here € isanidempotent €° =€
Symplectic spinors

U, =ve€ A  Algebraic equivalent of a wave function

Ur =ep € A Algebraic equivalent of conjugate wave function.

Need two Schrodinger-like algebraic equations

.6‘IJL -2 .8\I’R
= HVY,, —
"ot L Z

— UpH

Left ideal

Right 1deal




The Two More Algebraic Equations.

Sum the two algebraic Schrodinger equations
= — — —
i [( 8, U )Up+TL(TrD t)] = (H\IIL) Up—0; (\I!H)

Write £ = Y1 ¥R so that

.dp Liouville
ryis H V- .
"ot A, p) equation

Conservation of Probability

Subtract the two algebraic Schrodinger equations

i [(E’twL)\pR - xpL(q:R‘Et)] - (ﬁ\pL) Tp+ 0 (\I:‘ﬁ)

Polar decompose V¥ = Re'Se¢ and Up =€eRe ™

05
P ot

Conservation of Energy.

+ 3[H,pl+ =0 New equation




OF
ot

0S8

2-——F+[F,H|gpg =0

ot

Moyal and Quantum Algebraic Equations.

-+ [F, Hyp =0

1

Moyal algebra

.0p

8t + [pa H]— _

65’

25, P+ p HlL =0

1

Quantum algebra

Where is the quantum potential?




Project Quantum Algebraic Equations into a Representation.

Project into representation using P, =|a)(d|

.OP(a) oS

JH|_) =0 2P(a)—— H =
Still no quantum potential \
Choose P, =|x)(x P VS, Conservation of
—+ V. [P =0 1s
B KR ot ™m probability
A= 4
2m 2 v
. ; ; p=V.S ‘ /\/
Quantum 03, N 1 (GSX) N Kx _ 1 'R, _0 .
H-J equation. of  2m\ ox 2 2mR\ ox* ). )
quantum

/ potential

Choose Fp = |p)(p|

’ 05, 1 K, K (BQRP)_O
2R, \ 0p2 ) »

/\

r=-V,S

[M. R. Brown & B. J. Hiley, quant-ph/0005026]




The Overarching Structure

Process, activity
Non-commutative

Algebraic structure. Holomovement

Implicate order.

AN

Shadow Shadow Shadow
Rhase sp'ace phase space phase space
(X'w(:c) , P'w(:c)) (qu(p),Pcb(p)) (X'f}(;g,)’P'r’(;g/))

Possible explicate orders.

[D. Bohm Wholeness and the Implicate Order (1980)]




Four Roads to Quantum Mechanics.

Standard.
Operators in Hilbert space.
Generalized phase space.

Uses ordinary functions in phase space with a non-commutative product.

Moyal star product. Deformed Poisson algebra.
Advantage: Nice classical limit.

Algebraic approach.
Everything is done in the algebra.
Wave functions replaced by elements in the algebra.

Advantage: Uses Clifford algebra therefore includes Pauli and Dirac.

Can also Schrodinger exploiting C = Cj ;

de Broglie-Bohm.
Contained 1n all of the above three.




Hierarchy of Clifford Algebras

Generating
elements.

Conformal {17 e()’ ela 629 e3’ e4a 65}

Twistors {w, m}

DiraC {19 e(), ela 62’ 63}

{1, Yo Yoo Y2 » Yab

{1’ ela 627 63}

1, o0, 0,, 03}

Schrodinger {1,¢e,}
L1}

Quantum?




How does it work?

How do we specify the state of the system?
bz, t) = &L (z,t)®R(z,t) = ¢r(z,t)ed(z, t) = or(z,t)ed(z, t)

Clifford density element

How do we choose the idempotent?

Decided by the physics.
For Dirac e=(1+v)/2 Picks a time frame
For Pauli e=(1403)/2 Picks direction of space
For Schrodinger e=1

NB we use Clifford algebras over the reals!




Physical Content of Schrodinger.

¢r=go+egi and @r =L =go—eg
p=®.8; = dro1 = g2 + g%
Relation to wave function: Cliff — Hilbert space.
oL = Yi
go=@"+v)/2  g=iY" —v)/2
If we write ¥ = Re*® then

go = Rcos(S) g1 = Rbln(S)

Then

Then . .
p=gs+9; = R%.
satisfies
Op
) — JH|I_ =0

MISSING information about the phase!

€ c C(),l




Pauli Particle continued.

L = go + g1€23 + g2€13 + g3€12 €23, €13, €12 € C3 0
¢r = RU

p=0.3, =dredr = R2UeU = R2(1 + UosU)/2

probability SPin  pg = G030 /2

p=R(1+s-0)/2 R?=p

It looks as if we have 4 real parameters to specify the state, {p, s;, s2, 83}

But s°=1/4

Something missing again!




Dirac Particle.
oL = a+ byiz + cye3 + dyiz + fyo1 + 9702 + hyos + nys. vyeCi3
p=PrP; =dredr = dr(l +v0)oL/2

This will give 8-real dimension spinor. We need 4 complex spinor.

We need a different but related idempotent.

p=orL(l+ v +ivi2 +iv012)0L/2
4 \
probability spin \
velocity axial vector

Proca current.
Bi-linear invariants.

Only 7 independent. Need 8 .. Still one missing!

NB we describe physical processes by physical properties.
[Takabayasi, Prog. Theor. Phys., Supplement No.4 (1957) pp. 2-80]




Dirac Current.

J = ¢rv00r
With @1, = a + byi2 + ¢yes + dvis + fyor + 9702 + hyos + nys.
To show it is the usual current we need Cliff — Hilbert space.
oL = Y;
Yr=a—ib; Yp=—-d—ic; Ys=h—in Y;=f+ig
After some work

JO = [rf* + [2? + s + [pal”
J' = 1] + oy + sl + atb]
J? = i[h1) — Yotbl + sty — Yathi]
J? = 19 — o] + Ys¥] — Vet

Dirac current in the standard representation.




What is Missing?

Phase information? Energy-momentum?

In conventional terms  2;T*" = 5" (8"1)) — (8“)y* b = " (5)"10
. H 5
In Clifford terms  2T*" = tr[y*¢ 7012 0 “é1]

3 . . . (_) ~ .
Only non-vanishing term in trace is when ¢ ~g10 0 Y@y, is a vector

After some work we find

— ~
érYo12 0 “or = AL (z),
where

> > «—r
Af=—(ad"b+cd"d+fO0"g+h 0 "n)
> >
Al=—(ad0"g+b0"f+cO0"h+d0"n)
> >
A5 (@@0"f—-b0"g—c0"n+d0o"h
> L
A% (@0"n—b0"h+cO0"f—-dd"g

)
)




Bohm Energy-Momentum Density Dirac.

Using ¥ =a—1ib; Yo=—-d—ic; Ww3=h—in Yvys=f+1ig

!

TU{) — ZZ(wja(JwJ _ wja()w;) _ ZRfa()SJ
i=1 )
! ¥ = R;e™

This is just the Bohm energy density, pEp

4

TOk — _ZZ( *6}"’9{, _,UJak * ZRZVS

1=1

This is just the Bohm momentum density, p Pg,

Why do we call these Bohm energy-momentum?




Bohm Energy-Momentum for Pauli and Schrodinger

Pauli. .
2pP" = —i(¢ro3 0 ") = 2pD" 0193

Where  pu — _(8g0)gs + (8*91)g2 — (8*92)g1 + (8*93)g0

2 2
Ep=-) R!0S; Pp=)Y RIVS,
i1=1

i=1

Schrodinger
—r ~ 9 B
PEB = _6(¢L 0 1¢L) =—-R 655 Ep = —E)tS
pPp = —e(¢1 V 61) = R*VSS Py =VS

[Bohm and Hiley The Undvided Universe, 1993]




Translations and Time Derivatives.

Construct a Clifford bundle.

Cliff /A= = gAg™! v Double cover
algebraic spinors

v - Rv/

N.B. We need TWO derivatives in the bundle space Dand D.

Spin bundle with connection.

—_— «— {

—_

Therefore we need to use two time development equations.




Time Evolutions: Differences and Sums.

Two equations for time evolution

— . —
0,8, = H®, and  —i9,®p=3pH
— <

H=H(D,V,m) H=H(D,V,m)

Difference:-
~ ~ S ~ ~
’i[(@gq)L)‘I)L -+ (I’L(ag@[,)] = (H(I)L)q)[, — ‘I)L(q)LH)
We can rewrite this as i0,p = [H, p|_ Liouville equation.

Conservation of probability

Sum:-

i[(8,8,)3;, — ®1(8,3.)] = (H®,)®p, + & (DL H)

Conservation of energy




Schrodinger Quantum Hamilton-Jacobi Equation

The LHS is

i[(8,%1)®L, — ®1(8,31)] = idr 0 11 = 20Ep = —20,S

200, = (H®.)®1, + &1 (DL H)

Since we have written  &; = Rexp(eS) with ¢ = 1,

B H—Pomi V()

k% V2R
2m R

9,8 + (VS)?/2m —

+V

0

Quantum Hamilton-Jacobi

Conservation of
energy.

\uantum Potential




Back to the Two Key Equations.

z'c’?t(chth) = (ﬁq)L)gL — @L(&,L‘ﬁ) Quantum Liouville
i@L?@L = (ﬁch)gL + @L(éL‘ﬁ) Quantum H-J
Shortened forms.
A " R - e . Conservation
10 = |H, pl- 101 0% = [H,p]+ equations
T I
Probability Energy
Spin I

Always produces a quantum potential




The Pauli Quantum Liouville Equation.
i0,p = [H, p|_
LHS becomes

i0,p = i0y[predr] = i0y[p + drosdr] = id,p + 20,(pS)

2pS = iproadr
PseudoSalar Bivector

Look at Pseudoscalar part.

[Ha ﬁ]_pseudo — (H¢L)035L — ¢L03(H5L)

2m[H,p] =2ip|4S-(P-W)-VP]|==2ip[(VInp)P+VP]|=-2iV.(pP)

—pseudo

Conservation of

0 probability equation

d.p+V.(oP/m)




The Bivector part of the QLE.

1H, 8] _pbivector = (H¢L)¢L — ¢L(¢5LH)
Then

ma,(pS)=—[VP-S+SAVW + P-W]

Again after some tedious work we find

(a + ﬂ)S - l[vzs+ (Vinp)VS|aS
m m

Remembering § = is and AAB=i(AxB)

ds (d + ﬂ)S = ls x V(pVs)
dt m
\
\

m

Equation for spin
time evolution.

The Quantum Torque

[Dewdney et al Nature 336 (1988) 536-44]




Spin trajectories and orientations.

8 .00 10.00 12.00 14.00 18.00 20.00

T x10*
SPIN ORIENTATION 025075

Fig. 4. Trajectories and orientations 6 associated with figs. 1 and 2.




The Quantum Hamilton-Jacobi Equation.

. - ~
i®r 0,2 = [H, p|~
Working the LHS.

i®1 0 ,®;, = i[(8,61)edr, — dre(0ror)]
Writing

i€ = 0193(l + 03)/2 = (012 + 0123) /2

PQ - S+ipQ = [H,f)L Q= 2(0¢U)l7
l | ¢, = RU
S B
A
Q - §+2iQ, = Phu
ot

The scalar part using Euler angles gives the same as BST, namely

E(t)=Q,-S=033+cos6(d,¢)

[Bohm, Schiller, Tiomno, Nuovo Cim., 1, (1955) 48-66]




The Quantum Hamilton-Jacobi Equation.

Working the RHS of pQ -S+ipQ = [H ; IA?L

Scalar part of |[H,p], is (ﬁq)L)&;L +¢L_(6L,E)

Bivector part of [H,p], i (FI)<I)L)5'3<I>L + <I>L03(<T>L (ﬁ)

After tedious but straight forward working

2m{H,p] scalar = ZP[Z(S' VW)+P + Wz]
where W = p‘lv(ps)

This becomes

Quantum
Hamilton-Jacobi

P 1 )
=+ [2(VW - 8)+W?]
2m 2@

QS

t

_/

~

Quantum Potential




The Quantum Hamilton-Jacobi Equation.

2mQ =[2(VW-8)+W?]=[$*(2VInp+(VInp)*)]+§-V>S
A

Again using
Euler angles

1[(V6)" +sin> 6(Vg)’ |

Putting this all together we get the QHL equation

p? Quantum HJ

Hap+cos6(d,9)]+ DY 0=0 equation.

where 2
Q=- AL [(V9)2 +sin’ 9(V(/))2] Quantum Potential
2mR 8m

This is exactly the equation obtained in the BST theory.

[Dewdney et al Nature 336 (1988) 536-44]




Dirac Energy-Momentum Conservation Equation.
Slight difference.

(6p6uq)L)E)L -+ <I>L.(6#8“<5L) +92m2®;d; = (0 Energy-momentum

$1(8,0"®L) — (8,0"®L)®L = 0 Spin torque

In order to proceed we need to start with

20P* = [(8"¢1)Y01201 — dLY012(0 L))

2pJ=¢L’}’0125L and 2pWH = —6“(¢L70125L)

and use

we find
P+ W? 4 [JOW* + 8, W*J] + [JOP* — 0, P*J] —m* =0
Separate Clifford scalar and pseudo-scalar parts, we find

P? +W? + [JOWH 4+ 8,W*J] —m* =0

pup” —m* =0




Dirac Continued.

We have
P? +W? + [JOWH 4+ 8,W*J] —m* =0
but 5
4p°P* = 4p’ P} + Y ~ A; AY = 4p* P} + 4p*T1?
=1
Thus

Pi4+ T2 + W2+ [JOWH + 0, WHT] —m? =0

Compare with g
pup! —m* =0

Find the quantum potential is H
Qp =TI° + W? + [JO,W* + 0, WHJ] v

Compare with quantum potential of Pauli
Qp = Wp -1- [S(VWP) -+ (VWP S] 2pS = ¢y, UleL]

Quantum potential of Schrédinger Qs = 1 VR

2m R




Dirac Spin Torque.

Go back to @L(6#6“<5L) — (8#6“@L)<5L =0

and get J-OuP* —P-W+JAOW" =0

with
2J - 0, P" = Jo,P" + 6,P"J All Clifford

2P W =PW+WP bivectors
2J N O WH = Jo,WH — o, WHJ

since p(P-W)=—(0"p)(Pu-J)— p(Pu-0"J)
we find 9, (pP*) - J+ p(Py - 0*J) + p(J ANJWH) =0

Since 29, (pP*) = 8,(T*") = 0

Quantum torque equation for Pauli is

(54 7:7) 5= 2@was)

m




Conclusions.

1. Do quantum mechanics entirely within the Clifford algebra.

No need for wave functions! [von Neumann algebra]

2. All terms used are bilinear invariants, i.e. observable quantities.
No wave functions

3. Use local energy-momentum density 74%(z*)

4. The Bohm model follows immediately.

2pPp (") = T (a*)

No appeal to classical mechanics at all.

Yet the Clifford is about classical space-time




What does it all mean Physically?

Not but

T2

Classical space ® (Classical space

[Hiley, Lecture Notes in Physics, vol 813, ed B. Coecke, 2010.]

Classical space

, Implicate order.
Non-commutative

Algebraic structure. Process:- The holomovement

/ | N\

Shadow Shadow

manifold Shadow manifold
manifold

Possible explicate orders.
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