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What is quantum Monte Carlo?
QMC is, essentially, ‘accurate calculation of the properties of assemblies of interacting
quantum particles using random sampling of the full many-body Schrödinger wave
function..’ For my purposes, it is applied to ‘continuum fermion’ cases i.e. realistic
atoms, molecules, and crystalline solids just as in regular quantum chemistry.

Why use wave functions? We work directly with the many-body wave function
Ψ(x1,x2, . . . ,xN) rather than the density ρ(x) since we can write down exactly the
equation that Ψ obeys (a very helpful thing to do when requiring accuracy . . . ):

ĤΨ = EΨ

• Variational Monte Carlo (VMC) - a cheaper less accurate technique which directly
computes expectation values such as the one below using standard Monte Carlo
numerical integration. May also involve optimization of Ψ by direct variation of
any parameters upon which it depends. Limited by flexibility of parameterization..

EVMC =

∫
ΨĤΨ dx∫

Ψ2 dx

• Diffusion Monte Carlo (DMC) - a more sophisticated, accurate (and expensive)
method which - in principle - projects out the exact ground state wave function
from a given ‘starting guess’ and then computes expectation values as above.
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Good things about DMC

• ‘Chemical accuracy’ (1 kcal/mol or 0.04 eV) and beyond readily achievable. Can
feed results of standard DFT/HF/etc.. calculations into a QMC code and greatly
‘improve’ the answer. Provides reliable benchmarking comparable to CCSD(T).

• Required computer time scales as N3 with system size (improvable to N2 with
some extra complication). Very favourable compared to standard correlated wave
function methods (up to N7 for similar accuracy).

• QMC algorithm intrinsically parallel. With certain caveats speed of calculation
increases linearly with number of processors (tested in practice to more than half
a million cores). Can therefore fully exploit top-of-the-range supercomputers and
other modern hardware including - in principle - GPUs. Most standard methods
cannot exploit more than a few thousand processors..

• ‘Natural’ description of electron correlation. Uses arbitrarily complex many-electron
Ψ with no need for analytic integrability. No BSSE or size consistency problems.
Not overly dependent on basis set quality - Ψ not represented by basis set.

• Can calculate ground states, excited states, chemical reaction barriers and other
properties within single unified methodological framework to high accuracy, based
solely on the variational principle. Works for finite or periodic systems.

QMC is essentially the only highly accurate method whose cost can be made to scale
reasonably with system size without significantly degrading the quality of the answer.
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Why use QMC when we can use DFT?
“Ψ is a high-dimensional object, dependent on 3N electron Cartesian coordinates, N electron spin coordinates, and 3Nn nuclear coordinates. For
a molecule such as benzene, with 12 nuclei and 42 electrons, this object exists in 162 − 6 = 156-dimensional Cartesian space! The determinant

has 42! = 1.4 × 1051 terms! We can’t even make a picture of it. If we were to store it as a numerical object, with a resolution of 0.1 au out

to 10 au, we would need 10312 numbers to store, at single precision (4 bytes/number), at 2 Gbytes/cm2 (counting electrical connections access),

we would need more than 10293 km2 of surface to store that information. The Earth has a surface area of less than 109 km2. The promised
knowledge hidden in the Schrödinger equation is not quite easily accessible! We must make do with much much less. How much less can we do
with?” [from an online DFT course]

DFT texts always begin by saying it is better to use the density - which depends on 3 variables -

instead of Ψ - which depends on 3N variables - and thus we use DFT. Fine - who has 10284 planets

after all? - but (a) in QMC we don’t represent Ψ everywhere in configuration space - we just sample

it, and (b) unfortunately the equation satisfied by the density is simply not known:

E[ρ] = T [ρ] +
∫
Vext(x)ρ(x) dx+ VH[ρ] + ??Exc[ρ]??

Exchange-correlation functionals are serious uncontrolled approximations..

• There are large classes of problem for which DFT gives qualitatively the wrong answer (weak

interactions, strongly-correlated systems, energy differences between different types of system, etc.)

• Huge dependence on XC functional. Answers not reliable i.e. even for functionals which give better

results on average, there is no guarantee it gives better answers for any single system.

• Many DFT users are unaware of this, and consider their results to be the ‘quantum’ answer. Until

recently - particularly in periodic systems - no benchmark method available to check accuracy.

– Typeset by FoilTEX – 5



Why use QMC instead of proper quantum chemistry methods?

• Usually takes serious computational effort to be accurate enough (e.g. the ‘gold
standard’ CCSD(T) extrapolated to complete basis limit).

• In principle can solve the Schrödinger equation as accurately as you like - just do
full CI with a complete basis set. This is not the point. The key point is scaling
of computer time with system size - in the modern age N7 will not do - as such
calculations quickly become impossible. We need to scale at most as a low-order
polynomial to do most problems of technological interest. QMC can do this.

• In general, you can do higher-order quantum chemistry techniques for atoms and
molecules but not for periodic systems such as crystalline solids.

• QMC is not restricted to the regular paradigm of expanding the many-electron
wave function in a basis set of differently occupied many-electron determinants
constructed from orbitals expanded in analytically integrable Gaussian basis sets. If
a mathematical expansion requires millions or billions of terms to converge, this is
normally taken to mean that the basis set is very poor. Why should the quantum
chemistry case be any different?

• Note that real wave functions have a cusp (gradient discontinuity) as an electron
passes through a nuclear position - this is impossible to represent with a set of
Gaussian functions all with zero gradient at the nucleus.

• Difficult to efficiently exploit many processors on large computers with QC methods.
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What’s wrong with QMC?

• Need to do a preparatory calculation with someone else’s HF/DFT code, and your
QMC software must have an explicit interface to that code. Often people find that
their HF/DFT code of choice is not supported, so they give up before they start.

• DMC is computationally expensive. Even though the scaling with system size is
good, there is a large pre-factor.. (c. 1000× slower than DFT).

• Difficult to compute forces and hence dynamics. Usually zero temperature.

• You will have no friends (both in the sense of being lonely - because to a first
approximation no-one else does it - and also because everybody hates a smartarse..)

QMC is not being advocated as a replacement for any of these other techniques -
which are all very useful in the spheres where they work; it should be considered as
the final building block in our atomic scale micro-laboratory of multiple techniques
that we use to simulate small parts of the real world.
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CASINO: the Cambridge quantum Monte Carlo software

M.D.Towler, N.D. Drummond, P. López Ŕıos, and R.J. Needs

Full details, discussion forum, and immediate download at http://vallico.net/casinoqmc/
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So how does QMC work? Some technical details..
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Monte Carlo integration

Alternative to traditional fixed-grid quadrature methods for evaluation of integrals,
the main difference being that the sampling points are chosen at random.

• I =
∫ b
a
f(x) dx = (b− a)f̄ with f̄ mean value of f(x).

• Unbiased estimate of f̄ is 〈f〉 = 1
M

∑M
i=1 f(xi) with the xi

randomly selected from the interval a ≤ xi ≤ b.

• Statistical uncertainty in 〈f〉 is given by σ =
σsample√

M
with σsample =√

〈f2〉 − 〈f〉2. If M large enough, estimate of the mean f̄ is

normally distributed (‘Central Limit Theorem’).

• For Monte Carlo integration, error decreases as the square root of the number of
sampling points ( i.e. as 1√

M
) irrespective of the dimensionality d of the integral.

• For a standard grid method such as the trapezoidal rule the error decreases as

O(M−
2
d). Monte Carlo wins in more than four dimensions.

• To make the estimate of a 100-dimensional integral ten times more accurate
requires 100 times more work with Monte Carlo integration. With the trapezium
rule it would require 1050 times more work!

• For N particle system we must do 3N -dimensional integrals. For high-dimensional
numerical integration there is effectively no alternative to Monte Carlo methods.
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How to sample things from probability distributions

In previous example, implicitly selected random points from uniform probability
distribution (i.e. from anywhere in interval with equal probability). Not sensible for

integral like
∫ +∞
−∞ e−x

2
dx - few if any points would lie in region where integrand is

finite. Thus required to sample points from non-uniform probability distributions.

Properties of probability distributions

• p(x) = probability density; p(x)dx = probability to be in interval (x, x+ dx).

• p(x) must be positive and normalized to unity:
∫
p(x)dx = 1

• Average values 〈f(x)〉 =
∫
p(x)f(x)dx with σ2 =

∫
p(x)f(x)2dx− 〈f(x)〉2.

To do Monte Carlo integration with a non-uniform distribution, generate set of M
points xi distributed according to desired p(x). This can be done using a random
walk moved according to the Metropolis algorithm. Then 〈f(x)〉 ' 1

M

∑
i f(xi) with

σ2 ' 1
M

∑
i f(xi)

2 −
(

1
M

∑
i f(xi)

)2
.

What is best p(x) to use? The one that minimizes the variance: pbest(x) = |f(x)|∫
|f(x′)| dx′.

Thus concentrate sampling points in regions where absolute value of integrand large
- importance sampling. Don’t in general know normalization though..

How does Metropolis work? Random walk moving from r to r′ with prob T (r −→ r′)

(e.g. Gaussian). Accept move with probability: a(r −→ r′) = min
[
1, T (r′−→r)p(r′)

T (r−→r′)p(r)

]
i.e. occasionally reject moves to regions of lower probability. Equilibration required.
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Many-electron wave functions

• Hartree product: ΨH = ψ1(x1)ψ2(x2) . . . ψN(xN)

• Single determinant:

ΨD =
1√
Ne

∣∣∣∣∣∣∣∣
ψ1(x1) ψ1(x2) . . . ψ1(xNe)
ψ2(x1) ψ2(x2)

... . . .
ψNe(x1) ψNe(xNe)

∣∣∣∣∣∣∣∣
• Single determinant Slater-Jastrow function: ΨDJ = ΨDΨJ

• Multi-determinant Slater-Jastrow function: ΨnDJ = (
∑n
i ciΨDi)ΨJ

• Multi- or single determinant Slater-Jastrow function with backflow

Jastrow factor ΨJ = exp (J ) is optimizable functional form for pair correlation, e.g.:

J =

Ne∑
i 6=j

[
−U0(rij)− U(rij) +

Nn∑
n

S
n
(ri, rj, rij)

]
and U0(rij) =

A

rij

(
1− exp

(
−
rij

F

))

with U power series expansion in e-e separation and Sn set of atom-centred functions
giving additional variational freedom in description of pair correlation near nuclei.

Backflow : replace coords xi in ΨD with collective coords ri({xj}) given by ri =
xi + ξi({xj}) with ξi configuration-dependent backflow displacement of particle i.
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Pair correlation function

Silicon with Slater-Jastrow wave functionVMC�g""(r; r0; [n])r at bond centerr0 in (110) plane
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Exchange-correlation hole

Inhomogeneous electron gas
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Variational Monte Carlo
Stochastic integration method for evaluating expectation values for fixed trial many-
body wave function Ψ(x1, . . . ,xN) ≡ Ψ(x):

EVMC =

∫
ΨĤΨ dx∫

Ψ2 dx
=

∫
Ψ2(ĤΨ

Ψ ) dx∫
Ψ2 dx

(
≡
∫
p(x)f(x) dx

)
where f(x) = ĤΨ

Ψ ≡ EL = ‘local energy’ and p(x) = Ψ2/
∫

Ψ2 dx.
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Hydrogen atom VMC

• Generate M points distributed as Ψ2 and average local energies EVMC ' 1
M

∑
iEL(xi).

• Optimal probability density p(x) = |f(x)|/
∫
|f(x′)| dx′ = |ΨĤΨ|/

∫
ΨĤΨ dx but this

tends to |Ψ|2/
∫

Ψ2 dx as Ψ tends to exact wave function when ĤΨ = EΨ.

• As Ψ tends to exact wave function, fluctuations in EL tend to zero (the ‘zero variance principle’).

Effectively still a basis set method - you get out what you put in.
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Wave function optimization
Trial wave functions contain parameters (Jastrow, backflow, det coeffs etc.) that
must be optimized in VMC so Ψ has optimal functional form. Need objective function
to minimize with respect to parameter set {α} - generally choose energy or variance:

EV =

∫
Ψ2(α)EL(α) dx∫

Ψ2(α) dx
or var(E) =

∫
Ψ2(α)[EL(α)− EV(α)]2 dx∫

Ψ2(α) dx

Until recently more usual to minimize variance, because:

• It has a known lower bound of zero.

• It can be applied to excited states.

• Efficient algorithms known for minimizing objective functions expressible as sum of squares (for

many years energy minimization was considered to be a difficult numerical problem).

• Varmin-optimized trial-functions exhibits greater numerical stability than energy minimized ones in

DMC (there is a smaller tendency for population explosions).

Still default choice if want DMC energies with Slater-Jastrow trial function.

Now also common to minimize energy, because:

• Efficient, numerically-stable algorithms for doing so have been discovered.

• Since trial wave functions cannot represent eigenstate exactly, the energy and variance minima don’t

coincide. Energy minimization should therefore produce lower VMC energies (and consequently

better DMC wave functions - see later).

• Better at optimizing parameters that change nodal surface - significance will become clear shortly.

• Resulting wave functions give better forces (and some other properties).
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Results of a VMC simulation

No Jastrow Optimized Jastrow

• Answer given as EVMC ± σ, where σ is some statistical error bar.

• Better Ψ give lower energy (variational principle) and smaller error bar.

• Statistical analysis required to eliminate serial correlation and get correct error bar.

Example results: cohesive energies

Method Si Ge C BN
DFT/LDA 5.28 4.59 8.61 15.07
VMC 4.48±0.01 3.80±0.02 7.36±0.01 12.85±0.03
Exp. 4.62 3.85 7.37 12.9

Not bad but not brilliant either..
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VMC is not enough

VMC results are OK (might recover 75− 85% of correlation energy) - not really good
enough to be worth the effort. Results highly dependent on trial wave function and
basis set quality. Problem is one of complexity - not clear how to make arbitrarily
accurate wave functions this way.

However, there is class of methods - collectively called projector Monte Carlo - which
in principle solve quantum problems exactly. Idea is to project out ground state by
repeated iteration of a projection operator P̂ , i.e., limi−→∞ P̂

i|ΨT 〉 ≈ |Ψ0〉. After
many iterations excited state |Ψi〉 contribution filtered out and ground state recovered.

Such methods depend upon guessed properties of many-body Ψ only in computational
efficiency, if at all. Diffusion Monte Carlo (DMC) is one such method.

Characteristics of diffusion Monte Carlo

• Systematically improves Ψ through magic process: stochastic propagation in imaginary time.

• Extremely weakly dependent on basis set quality.

• Scales as N3 or better with system size.

• Taken to limit, comparable in accuracy with benchmark quantum chemistry correlated methods.

The main use of VMC in practical calculations is to prepare the

input for a diffusion Monte Carlo simulation.
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Propagators: motivation

Let’s say we wish to integrate the time-dependent Schrödinger equation:

ih̄
∂Ψ(x, t)

∂t
= − h̄

2

2m
∇2Ψ(x, t) + V (x, t)Ψ(x, t) = ĤΨ(x, t)

where x = {x1,x2, . . . ,xN}. Usually use atomic units: h̄ = 1,m = 1.

• Inverse of this differential equation is an integral equation involving the propagator:

Ψ(x, t) =

∫
K(x, t;x′, t′)Ψ(x′, t′) dx′

The propagator is the probability amplitude for a particle to travel from one place
to another in a given time. It is a Green’s function for the Schrödinger equation.

• Ordinarily one might use the Feynman path-integral formulation of quantum
mechanics to calculate the propagator. For given start and end points, overall
amplitude given by summing contributions of infinite number of all possible
histories which include those points. Amplitude contributed by a particular history
proportional to eiScl/h̄ where Scl is classical action of that history i.e. time integral
of classical Lagrangian T − V along corresponding phase space path of system.
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Pilot wave theory

Otherwise known as de Broglie-Bohm theory or Bohmian mechanics, this is an interpretation of QM

where particles exist and have trajectories (most people believe not possible!). Invented in 1927 by de

Broglie, but unfairly overruled by logical positivists of Copenhagen school (Bohr, Heisenberg, etc.).

• Particles guided by wave along streamlines of probability flow, following trajectory v = ∇S/m
where S is phase of Schrödinger wave function written in polar form Ψ(x, t) = R(x, t)eiS(x,t)/h̄.

• Whole thing follows from a single semantic change in the meaning of a word: |Ψ|2 is probability of

being at x rather than probability of being found there in a suitable measurement. Under

this assumption, measurement problem and all quantum ‘paradoxes’ simply disappear.

Quantum trajectory method
Pilot-wave theory not just interpretation: mathematical formulation of QM useful to compute

propagator! Substitute Ψ polar form in Schrödinger equation. Separate real and imaginary parts. Get

equations of quantum hydrodynamics - a ‘quantum trajectory method’ (analogy with fluid mechanics):

∂ρ
∂t = −ρ∇ · v (continuity equation, where ρ = R2) and ∂S

∂t = L(t) = 1
2mv

2 − (V + Q) (the

quantum Hamilton-Jacobi equation - an equation for the phase involving the quantum potential Q).
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Wave function synthesis along quantum trajectory

Ψ = R(x, t)e
iS(x,t)
h̄

Propagation of the amplitude

Along trajectory x(t) from (x0, t0) to (x1, t1) rate of change of density ∂ρ
∂t = −ρ∇·v.

Amplitude R = ρ
1
2 so ∂R

∂t = −R2∇·v. Integrate to get new R in terms of value at t0.

dR

R
= −

1

2
∇ · v dt

integrate
−−−−−−→ lnR + c = −

1

2

∫ t1
t0
∇ · v dt

exponentiate
−−−−−−−−→ A exp(lnR) = exp

[
−

1

2

∫ t1
t0
∇ · v dt

]

R(x1, t1) = exp

[
−1

2

∫ t1

t0

(∇ · v)x(t) dt

]
R(x0, t0)

To propagate R we integrate the divergence of the velocity field along the trajectory.

Propagation of the exponential of the phase

Quantum H-J eqn is
∂S

∂t
= L(t) =

1

2
mv

2 − (V +Q). From S(t1) = S(t0) +

∫ t1
t0

∂S

∂t
dt

× i
h̄

and exponentiate
−−−−−−−−−−−−−−−→

e
iS(x1,t1)

h̄ = exp

[
i

h̄

∫ t1

t0

L(t) dt

]
e
iS(x0,t0)

h̄

To propagate e
iS(x,t)
h̄ we integrate the quantum Lagrangian along the trajectory.
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Wave function synthesis along quantum trajectory

We multiply the expressions for the R propagator and the e
iS(x,t)
h̄ propagator to obtain

an expression for updating the full wave function along the trajectory:

Ψ(x1, t1) = exp
[
−1

2

∫ t1
t0

(∇ · v)x(t) dt
]

exp
[
i
h̄

∫ t1
t0
L(t) dt

]
Ψ(x0, t0)

Hydrodynamical wave function propagator (HWFP) KQ(x1, t1;x0, t0)

What does ∇ · v mean here?

At time t have volume element dV (t). Element corners defined by

trajectory positions {a, b, c, d}. Increment time by dt and equations of

motion shift corners to {a′, b′, c′, d′} and volume element changes to

dV (t+dt). Ratio of new to old volumes is the Jacobian: dV (t+dt) =

J(t+ dt, t)dV (t). Can be shown Jacobian is:

J(t1, t0) = exp

[∫ t1

t0

∇ · v dt

]
.

• Implies if velocity field has positive divergence (velocity vectors ‘point away from each other’) then

Jacobian increasing and local volume element expanding along flow. So velocity divergence locally

measures rate of change of geometric quantity.

• Note the R-propagator exp
[
−1

2

∫ t1
t0
∇ · v dt

]
is thus just J(t)−

1
2 .
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An interesting comparison

Quantum trajectories and Feynman path integrals

• In the expression Ψ(x1, t1) = KQ(x1, t1;x0, t0)Ψ(x0, t0) that propagates the wave
function along the quantum trajectory, the propagator KQ may - expressing the
R-propagator in terms of the Jacobian - be written as

KQ(x1, t1;x0, t0) =
1

J(t)
1
2

exp

[
i

h̄

∫ t1

t0

L(t) dt

]
.

• In Feynman’s path integral formulation of quantum mechanics the equivalent
propagator may be written as

KF (x1, t1;x0, t0) = N
∑

all paths

exp

[
i

h̄

∫ t1

t0

Lcl(t) dt

]
.

Here propagator linking two spacetime points calculated by linearly superposing
amplitudes eiS/h̄ (obtained by integrating classical Lagrangian Lcl(t) = 1

2mv
2−V )

associated with infinite number of all possible paths connecting the points.

In pilot-wave approach, achieve same effect by integrating the quantum Lagrangian
L(t) = 1

2mv
2 − (V +Q)along precisely one path. Bet you didn’t know that..
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Quantum trajectories and quantum Monte Carlo

What connection, if any, is there between quantum trajectory methods and state-
of-the-art techniques like quantum Monte Carlo that accurately solve the time-
independent Schrödinger equation sampling the full many-electron Ψ?

Diffusion Monte Carlo

The most highly-evolved QMC variant with broad scope is diffusion Monte Carlo (DMC). It is probably

the most accurate method known for solving the many-electron Schrödinger equation that also scales

reasonably with the number of particles. It remains tractable (and highly accurate) for large system

sizes; simulations of periodic systems with over 2000 electrons per cell have been reported.

It propagates an arbitrary starting wave function using a (Green’s function) propagator just like the

ones we have been discussing. The main difference is that the propagation occurs in imaginary time

τ as opposed to real time t. This has the effect of ‘improving’ the wave function i.e. making it look

more like the ground state as imaginary time passes (see later).

Ψ(x, τ + δτ) =

∫
K(x, x

′
, δτ)Ψ(x

′
, τ) dx

′

Evolving wave function represented by distribution in space and time of randomly-diffusing electron

positions over an ensemble of copies of the system. From pilot-wave perspective, this is something like

calculating expectation values by ‘sampling trajectories’ (from ensemble of different launch points).

Further reading

Quantum Monte Carlo simulations of solids, W.M.C. Foulkes, L. Mitas, R.J. Needs and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).
The quantum Monte Carlo method, M.D. Towler, Phys. Stat. Solidi 243, 2573 (2006).
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Why do we propagate Ψ in imaginary time in DMC?

Consider Schrödinger equation (in a.u.) with constant offset ET to zero of potential:

−∂Ψ(x, t)

i∂t
=
(
Ĥ − ET

)
Ψ(x, t).

For eigenstate, general solution is clearly

φ(x, t) = φ(x, 0)e−i(Ĥ−ET )t.

Then expand an arbitrary (‘guessed’) Ψ(x, t) in complete set of eigenfunctions of Ĥ.

Ψ(x, t) =

∞∑
n=0

cnφn(x)e−i(En−ET )t

Substitute it with imaginary time τ = it. Oscillatory behaviour becomes exponential.

Ψ(x, τ) =

∞∑
n=0

cnφn(x)e−(En−ET )τ

Get imaginary time independence by choosing constant ET to be ground state
eigenvalue E0. As τ →∞, Ψ comes to look more and more like the ground state φ0.

Ψ(x, τ) = c0φ0 +

∞∑
n=1

cnφn(x)e−(En−E0)τ
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How do we propagate Ψ in imaginary time in DMC?

• We use a Green’s function propagator K(x,x′, δτ):

Ψ(x, τ + δτ) =

∫
K(x,x′, δτ)Ψ(x′, τ) dx′

• How do we find an expression for the propagator K? Consider imaginary-time
Schrödinger equation in two parts:

∂Ψ

∂τ
=

1

2
∇2

xΨ (diffusion equation)

∂Ψ

∂τ
= −VΨ (rate equation)

• Propagator for diffusion equation well-known: it is a 3N -dimensional Gaussian with
variance δτ in each dimension. Propagator for rate equation known - gives so-
called ‘branching factor’ which can be interpreted as a position-dependent weight
or stochastic survival probability for a member of an ensemble.

K(x,x′, δτ) =
1

(2πδτ)
3N
2

exp

(
−|x− x′|2

2δτ

)
× exp

[
−δτ

(
V (x) + V (x′)− 2ET

2

)]
Multiplying the two together to get the propagator for the imaginary-time

Schrödinger equation is an approximation valid in the limit of small δτ .
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A Diffusion Monte Carlo simulation
• Interpret Ψ as a probability density, then diffusion equation ∂Ψ

∂τ = 1
2∇

2
xΨ represents

movement of N diffusing particles. Turning this around, can represent Ψ(x, τ) by
ensemble of such sets of particles. Member of ensemble called a ‘configuration’.

• Interpret propagator K(x,x′, δτ) as probability of configuration moving from x′

to x in a time δτ . Branching factor determines population of configurations: in
regions of high V configurations will be killed off; in low V regions configurations
will multiply. It is this that ‘changes the shape of the wave function’ as it evolves.

• Propagate distribution in imaginary time, and after sufficiently long time excited
states will have decayed away to leave the ground-state Ψ. Can then continue
propagation and accumulate averages of observables.

Guess that the ground-state wave function for a single electron in a
harmonic potential well is a constant over some range (stupid!). Start
with seven copies of the system over which ensemble the electrons are
distributed according to this constant probability distribution. Propagate
the particle distribution in imaginary time according to the prescription
above, and watch the electrons become distributed according to the proper
Gaussian shape of the exact ground-state wave function. The change
in shape is produced by the branching factor occasionally eliminating
configurations in high V regions and duplicating ones in low V regions..

V(x)

Ψinit
(x)

Ψ0
(x)

t

τ {

x
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Importance sampling and the fixed-node approximation in DMC
The basic DMC algorithm sounds nice but doesn’t work in practice. This is because:

• Ψ can only be a probability distribution if of one sign everywhere (e.g. H atom,
boson system). For multi-particle fermion systems it necessarily has positive and
negative bits. Obvious ways of getting round this (e.g. separate probabilities for
different signs) fail on account of signal-to-noise problems (‘fermion sign problem’).

• Branching factor exp
[
−δτ2 (V (x) + V (x′)− 2ET)

]
contains potential V varying

from −∞ to +∞. Sampling of points e.g. near nucleus leads to massive
fluctuations in branching factor and significant numerical instabilities.

Fix problem by introducing importance sampling via a guessed trial function ΦT
(from a HF or DFT calculation, say). Require propagation to produce distribution
f(x, τ) = Ψ(x, τ)ΦT (x) - forced to be of one sign by demanding fixed ΦT and variable
Ψ functions have same nodal surface i.e. same zeroes (‘fixed-node approximation’).

New ‘imaginary time Schrödinger equation’ (Fokker-Planck)

−
∂f(x, τ)

∂τ
= −

1

2
∇2

xf(x, τ) +∇x · [F(x)f(x, τ)]− (EL(x)− ET) f(x, τ)

F(x) ≡ ∇xΦT
ΦT

‘drift vector’ EL = ĤΨ
Ψ ‘local energy’

f(x, τ + δτ) =
∫
K(x′, x, δτ)f(x, τ) dx′
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Problem solved - more or less
Final propagator consists of diffusion, drift and branching processes:

K(x
′
, x, δτ) =

1

(2πδτ)
3N
2

exp

[
−

(x′ − x−δτF(x))2

2δτ

]
exp

[
−
δτ

2

(
EL(x) + EL(x

′
)− 2ET

)]
To be compared with the original propagator without importance sampling:

K(x, x
′
, δτ) =

1

(2πδτ)
3N
2

exp

(
−

(x− x′)2

2δτ

)
exp

[
−
δτ

2

(
V (x) + V (x

′
)− 2ET

)]

• Mixed distribution f = ΨΦT of one sign everywhere so no more sign problem (at
cost of reducing flexibility by fixing the nodes).

• Branching term now contains local energy EL = ĤΨ/Ψ which fluctuates much less
than the potential V (for an eigenstate, EL is constant everywhere in configuration
space). No more numerical instability in the branching.

• Importance sampling from drift term F(x) = ∇ΦT/ΦT enhancing density of
configs where ΦT is large i.e. there is a drift or osmotic velocity directed towards
large ΦT on top of the random diffusion - like electric field on Brownian motion.

Fixed-node approximation most serious error in DMC, but still recover 95-100% of
the total energy error made in a Hartree-Fock calculation (the ‘correlation energy’)
for typical systems.
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Results of DMC simulation

sI methane clathrate (178 atoms per cell)
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DMC cohesive energies

Method Si Ge C BN NiO
DFT/LDA 5.28 4.59 8.61 15.07 10.96
VMC 4.48±0.01 3.80±0.02 7.36±0.01 12.85±0.03 8.57±0.01
DMC 4.63±0.02 3.85±0.02 7.35±0.01 9.44±0.01
Exp. 4.62 3.85 7.37 12.9 9.45

Units: eV per atom Si/Ge/C and eV per 2 atoms BN/NiO

DMC is a big improvement!
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Scaling with system size
How does the computational cost of DMC increase with the number of electrons?

• The rate limiting step is the evaluation of the orbitals in the Slater matrix (whose determinant -

assuming no Jastrow - is value of wave function at a point in configuration space).

• Moving all N electrons once using a delocalized basis set (e.g. plane-waves) is O(N3) (from

N orbitals expanded in N basis functions at each of N electron positions).

• Improve to O(N2) using a localized basis set (Gaussians, blip functions) since number of non-zero

basis functions at a point does not increase with system size

• Improve to O(N) using localized orbitals as linear combinations of originals: φm(r) =∑M
n=1 cmnψn(r). Doesn’t change energy since det |φm(ri)| = det |cmn| · det |ψn(ri)| i.e.

determinant unchanged apart from constant det |cmn|. Unitary transformation matrices give

orthogonal orbitals; non-unitary transformations give non-orthogonal ones; the latter tend to be

more localized and therefore preferred.

• Moving all electrons enough times to get desired error bar adds extra factor of N to scaling,

as increasing system size increases sample variance, and must run calculation for longer to bring

error bar down. Overall O(N2) scaling - compares favourably with O(N7) for e.g. CCSD(T).
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Some applications of DMC..
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Weak interactions

Simple question: does a water molecule stick to a graphene surface or not?

Water interacts with materials via van der Waals dispersion and hydrogen bonding - both weak

interactions which DFT has a problem with. You can basically get any answer you like depending on

which exchange-correlation functional you select.

Which functional shall I choose? No real answer to this without comparing with a DMC benchmark..

The fashion nowadays would be to bring in one of the new functionals that supposedly incorporate

empirical ‘van der Waals corrections’. Do these work? Again - very difficult to say without comparison

with DMC benchmarks. Let’s try this with a complex material of current industrial interest..
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Gas hydrates
Gas hydrates pose problems to the energy

industry (their formation blocks gas lines)

and they are a potential untapped energy

resource (abundance of naturally occurring

methane hydrate exceeding conventional

gas reserves by at least an order of

mangitude). Difficult for DFT since held

together by hydrogen bonds and van der

Waals. Our recent paper provides high-

quality DMC reference data.

[Cox, Towler, Michaelides, Alfè, arXiv:1402.6874 (2014)]

• Clathrate structures of gas hydrates are like ice (extended hydrogen bonded network of water

molecules) but contain cavities - dodecahedrons and 14-sided tetrakaidecahedrons(!) in the sI

structure considered here - that gas molecules like methane can occupy. Complex crystals with

178-atom simulation cells.

• I used CASINO to calculate (1) the lattice constant (11.83±0.02 Å, cf. exp. 11.821±0.001 Å),

and (2) the cohesive energy for complete dissociation of the filled hydrate (into 46 water molecules

and 8 methanes). In order to understand better the behaviour of DFT, we decompose this into

two contributions by also calculating: (3) the cohesive energy of the empty hydrate (into 46 water

molecules), and (4) the binding energy of methane to the empty hydrate..

My collaborator Stephen Cox did some DFT calculations as well.. How do they do?
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DFT vdW corrections don’t work for gas hydrates

Variation of full cohesive energy with lattice constant

• All DFT functionals overbind the filled hydrate, most of them
significantly. Only PBE gets more or less the right cohesive energy and
lattice constant - even though it doesn’t account for vdW interaction
at all (note that correcting for it totally stuffs up the answer!)..

• If no vDW how come PBE overbinds at all then? VdW is an attractive
force isn’t it?

• Answer (see below): Lack of vDW in PBE means there is no binding
at all between the methane and the water, but this is compensated
for by an overbinding of the hydrogen-bonded water framework.

• Although overbinding of water framework is small per molecule, water
and methane exist in a ratio of 23:4 in the stoichiometric hydrate - so
small errors in describing water-water interactions are much amplified
compared to apparently larger errors in the methane binding energy.

• With exception of PBE-D2, the vdW-corrected functionals all
overcorrect: methane binding energies too strong by 83-130
meV/H2O. Similar analyses can be made for the other functionals.

• All results assume H2O/CH4 vapour phases as reference state. More
important to gas hydrate phase equilibria is relative energy of hydrate
to CH4 gas and either liquid water or ice. For case of ice Ih DMC
predicts endothermic dissociation costing 155±34 meV/CH4.

• Experimental dissociation enthalpy 188±3 meV/CH4. DMC value
reasonable - though total ∆Es not enthalpies; expect difference
due to neglect of T, P and also from non-stoichiometry (methane
occupancy 96% in this study - configurational entropy effects?).
Alternative analysis of experimental data sets using Clapeyron
equation exists suggesting dissociation enthalpy 157±6 meV/CH4.

• PBE disastrous: predicts sI methane hydrate will explode.

• Best functional for agreement with DMC in this case is PBE-D2,
closely followed by er.. LDA and PBE-vdW.

Binding energy of methane to the empty hydrate (red) and formation
energy of empty hydrate (blue). Horizontal lines are DMC.
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Hydrogen storage

Desirable to replace petrol as a fuel with portable form of hydrogen

(since plenty of it, high energy density, and used efficiently by

fuel cells). Use materials-based H storage - trade some of

high energy/mass performance to improve low energy/volume

performance.

• Requires very particular material with desorption enthalpy ∆H0 in precise 20 kJ/mol range (to

allow recharging under moderate pressure and desorption under moderate temp). Difficult to

achieve since chemical bounds normally too strong and hydrogen bonds usually too weak..

• Metal hydrides (where the metal is e.g. Li, Na, Mg, Al) good candidates: high H content,

thermodynamically stable relative to physisorption materials.

• However most metal hydrides bind with H very strongly - high T required to release it (−→ low

equilibrium vapour pressure). Can improve this by using alloys which consists of ‘strong’ hydride

and ‘weak’ one e.g. LiNH2, LiBH4 and NaBH4. These are able to form weaker bonds, thereby

requiring less energy input to release stored hydrogen. Also: using nanoscale particles could help:

surface energy then additional lever to adjust ∆H0.

Basic questions
(1) To what extent can we use size and composition to control ∆H0 in metal hydrides?

(2) How much can we rely on DFT in such cases?

‘Tuning metal hydride thermodynamics via size + composition: Li-H, Mg-H, Al-H, and Mg-Al-H nanoclusters for H storage’ Wagner et al. (2012)
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Hydrogen storage
Wagner et al. used DMC to compute change in energy in the reaction (MHm)n −→ Mn + mn

2 H2

for M = Li, Mg, Al, and two alloys of MgAl. Motivation: MgH2 is too stable, but AlH3 is too unstable

- attempt to ‘interpolate between them’.

DMC shows that mixed Mg-Al nanoclusters are predicted to have intermediate stability, and that their

size composition can be tuned to obtain H2 desorption thermodynamics within the desired range for

onboard H storage.

Calculations

• Generate minimum energy structures of metal hydride and pure metal clusters with number of metal

atoms up to 20 (c. 1 nm regime, where most atoms reside at the surface). They use something

like Pickard/Needs random structure searching.

• Evaluate hydrogen desorption energies ∆E with both DFT and DMC (good approximation to

enthalpy ∆H0 since standard pressure v. small compared to internal energy in these nanostructures).

• Do some test calculations with CCSD(T) extrapolated to complete basis set limit for the small

clusters where this is feasible to check it agrees with DMC (it does).

• Calculate zero-point energy in the usual way when comparing to experimental numbers.

– Typeset by FoilTEX – 38



Hydrogen storage
• DFT results all over the place: functional-dependent spread

of 30-40 kJ/mol. Not good enough to predict what kind of

alloy/cluster will have a ∆H in some 20kJ/mol range.

• Generally, hydride nanoparticles are ionic (H acts as charge

acceptor) but pure metal clusters increase metallic character

with size. DFT not capable of reliably calculating difference

between such qualititatively different electronic states.

• ‘More sophisticated’ functionals (M06, B3LYP) no better than

LDA and PBE.

• Idea of ‘interpolation’ really does work:
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Hydrogen storage: conclusions

• High-accuracy DMC scaling curves for the hydrogen desorption energy of several different

intermetallic alloys were computed as a function of nanoparticle size. Strong size dependence

in the scaling of ∆E as the nanoparticle size becomes close to 1 nm. Specific predictions for

nanoparticle sizes with ∆E in the correct range were made (see paper). Occurs for MgAl and Al

clusters only, not Mg or Li.

• Similar predictions with DFT depend hugely on the chosen functional, and are simply not reliable.

• The computational cost of the several hundred required DMC calculations was not prohibitive

(about the same as the relaxation of the atomic coordinates in DFT). Future calculations should

therefore use DMC energetics to correct the DFT ones.

• Alloying can significantly alter the size range in which the nanoparticles have the desired desorption

energies. The alloys are generally stabilized by nanoscale effects.

• So here we have a suggestion for a tunable hydrogen storage system that uses alloys of Mg and

Al. Either the alloy composition or particle size can be tuned to optimize the ease of making and

storing the nanoparticles, while the other variable can be tuned to obtain the correct desorption

energy. Kinetics at the nanoscale will likely be much improved over the bulk systems.
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Defect energetics
‘Point-defect optical transitions and thermal ionization energies from quantum Monte Carlo methods: application to the F -center defect in MgO,
Ertekin, Wagner, Grossman, Phys. Rev. B 87, 155210 (2013).

DFT-PBE band structure for 64-atom MgO cell containing single oxygen
vacancy. Introduces localized midgap defect level of symmetry a1g

• Application of QMC to F -center defect (oxygen vacancy) in MgO:
defect formation energies, thermal ionization levels, optical ionization
energies.

• Experimental properties ambiguous. Different charge states
apparently have near-identical optical absorption energies. GW and
now DMC disagree. Time for reassessment of experiment?

• DFT band gap severely underestimated - problem for midgap defect
states, defect energetics, defect-induced optical adsorption/emission
energies!

• DMC treatment of pure MgO: calculate ground state E0, Γ-point
optically excited state EΓ→Γ, and the positively and negatively
charged states E+ and E−. Then ionization potential IP =
E0 − E+, electron affinity EA = E− − E0, quasiparticle gap
QP = EA − IP , optical gap EΓ→Γ − E0. Good agreement
with experiment where possible to compare; DFT not.

Compute defect formation energies:

∆ED,q = (ED,q − Eperf)−
∑

i niµi + q(EV + EF )

Here ED,q is the (computed) total energy of the supercell containing a defect D in the charge state q, and Eperf is the (computed) total energy

of the perfect supercell. The ni is the number of atoms of species i added to create the defect (can be negative). The µi are the set of chemical
potentials to represent different environmental conditions. EV is energy of valence band maximum (ionization potential in DMC), and EF is the
Fermi energy referenced to EV so that 0 ≤ EF ≤ Eg where Eg is the band gap.

Charged defects introduce electrostatic image interactions between neighbouring supercells which manifest as finite size errors. These can be
estimated using an extrapolation approach. For simplicity the authors use the DFT extrapolation; even though expensive this can also be done in
QMC in principle, and probably should be since differences in electron localization and screening in the two approaches should lead to different
answers..
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Defect energetics
• Thermal ionization energies correspond to the Fermi energies at which the energetically

most-favoured charge state of the defect changes.

• Creation of an F0 centre results in formation of filled midgap defect level. Very little
lattice relaxation on removal of O.

• When electron is removed to form F+1 centre, there is large lattice relaxation - positive
Mg ions move outward away from and negative O ions move inward towards, the positively
charged vacancy in conjunction with a 0.55 eV drop in energy (DFT). Further ionization

to form F+2 centre gives further lattice relaxation and energy recovery of 1.18 eV.

• Defect formation energies and thermal ionization energies plotted on left as function of
Fermi energy. Note domain of Fermi energy (length of x-axis) determined by the band gap
of the method in question (which is much better for DMC).

• DMC modifies somewhat the absolute values of the defect formation energies (by 0.5eV

for F0), but maintains thermal ionization levels near midgap. DMC shows that DFT
underestimates formation energies in the case of occupied midgap levels.

• QMC description of optical ionization energies (which correspond to
vertical Franck-Condon transitions).

• Optical transition occurs when photon absorbed or emitted by defect
- takes place essentially instantaneously at fixed atomic coordinates.
Therefore compute these transition using the relaxed coords of the
initial state. Implies difference between absorption and emission.

• DMC absorption energies in excellent agreement with experiment
and GW calculations. DMC emission energies agree with GW, but
disagree with experiment. GW authors suggest experimental people
have misinterpreted their results (something to do with electrons in
the defect level recombine with holes in the valence band). Our QMC
people agree with this.

Application of QMC to point defects still relatively

new field, but lots of fascinating possibilities!
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Databases/high-througput QMC
Various efforts are ongoing to create standard benchmarks and databases of DMC results for large

numbers of material with different types of binding.

Requires development of consistent, automated procedures to achieve high throughput. See, for

example:

‘Quantum Monte Carlo applied to solids’, Shulenburger, Mattsson,

Phys. Rev. B 88, 245117 (2013)

‘Quantum Monte Carlo for materials design, Mueller,

http://vallico.net/talk archive/mueller tti2013.pdf

“By 2016-ish, we should be able to calculate QMC energies for every known inorganic material on a

single supercomputer in about a week (roughly).” [Tim Mueller, Vallico Sotto, August 2013]
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Strongly correlated materials
From Wikipedia, the free encyclopedia

“Strongly correlated materials are a wide class of electronic materials that show unusual (often technologically useful)
electronic and magnetic properties, such as metal-insulator transitions or half-metallicity. The essential feature that
defines these materials is that the behavior of their electrons cannot be described effectively in terms of non-interacting
entities.Theoretical models of the electronic structure of strongly correlated materials must include electronic correlation
to be accurate.

Many transition metal oxides belong into this class which may be subdivided according to their behavior, e.g. high-Tc,
spintronic materials, Mott insulators, spin Peierls materials, heavy fermion materials, quasi-low-dimensional materials,
etc. The single most intensively studied effect is probably high-temperature superconductivity in doped cuprates,
e.g. La2−xSrxCuO4. Other ordering or magnetic phenomena and temperature-induced phase transitions in many
transition-metal oxides are also gathered under the term ‘strongly correlated materials‘.

Typically, strongly correlated materials have incompletely filled d- or f -electron shells with narrow energy bands. One
can no longer consider any electron in the material as being in a ‘sea’ of the averaged motion of the others (also
known as mean field theory). Each single electron has a complex influence on its neighbors.

The term strong correlation refers to behavior of electrons in solids that is not well-described (often not even in
a qualitatively correct manner) by simple one-electron theories such as the local-density approximation (LDA) of
density-functional theory or Hartree-Fock theory. For instance, the seemingly simple material NiO has a partially filled
3d-band (the Ni atom has 8 of 10 possible 3d-electrons) and therefore would be expected to be a good conductor.
However, strong Coulomb repulsion (a correlation effect) between d-electrons makes NiO instead a wide-band gap
insulator. Thus, strongly correlated materials have electronic structures that are neither simply free-electron-like nor
completely ionic, but a mixture of both.

Extensions to the LDA (LDA+U, GGA, SIC, GW, etc.) as well as simplified models Hamiltonians (e.g. Hubbard-like
models) have been proposed and developed in order to describe phenomena that are due to strong electron correlation.
Among them, Dynamical Mean Field Theory successfully captures the main features of correlated materials. Schemes
that use both LDA and DMFT explain many experimental results in the field of correlated electrons.”

The perovskite structure of
BSCCO, a high-temperature

superconductor and a
strongly correlated material

NB: must understand what the above means when translated to our language - not the same thing.

In general ‘strongly correlated electron physicists’ misunderstand what we do. QMC actually very

promising approach to accurately computing everything required with no parameters - a fact not

generally appreciated..
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Optimizing the nodal surface in strongly-correlated system
Because these materials are quite complex, need to pay more attention to getting the nodal surface

right. An excellent practical way to do this - exploiting the variational nature of the DMC method -

is to treat the percentage of HF exchange in a hybrid DFT functional such as B3LYP as a variable

parameter (effectively varying the amount of d-p hybridization). (Could also optimize orbitals directly;

this is more difficult but not impossible. Multireference trial functions could also be useful in some

circumstances.). This is, not usually thought to be necessary for ‘normal’ compounds without transition

elements where the nodal surface is usually ‘good enough’.

Above left is an isosurface of the d-p hybridization orbital for the TiO molecule, calculated in Hartree-

Fock (above) and DFT-B3LYP (below). Oxygen atom in red on the right. Titanium in green on the

left. UHF solution overionizes the p orbital and causes large fixed-node errors. See Wagner, J. Phys.:

Cond. Mat. 19, 343201 (2007). Above right is graph showing variation in DMC energy as the nodal

surface is varied with the exchange weight for two structures (NiAs and NaCl) of FeO.
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Mechanism of vanadium dioxide (VO2) metal-insulator transition

.

VO2 undergoes metal-insulator transition at T=340 K, with

accompanying decrease in conductivity of more than 4 orders of

magnitude and change in structure from rutile (high T , V at centre of

O octahedra, equidistant V) to monoclinic (low T , zigzag of V dimers).

Zheng and Wagner, arXiv:1310.1066 (Oct 2013)

Long-standing debate for 50 years whether transition is primarily caused by structural change that

doubles the unit cell (Peierls distortion) or by ‘strong correlation effects’ that drive the system to

become insulating.

Predictions of traditional theoretical methods

• DFT(LDA), DFT(GGA): monoclinic VO2 metallic (wrong)

• DFT(hybrid functional): rutile metallic, monoclinic insulating (yes!); rutile lower in energy (wrong).

• DFT+U: monoclinic VO2 insulating (yes!); rutile VO2 insulating (wrong); incorrect magnetic GS

for monoclinic VO2 (wrong); depends on parameter; no total energy.

• cluster DMFT: correct gaps, but depends on parameters; no total energy.

• GW: correct gap; does not address magnetic properties; no total energy.

Predictions of DMC

Zheng and Wagner’s DMC calculations (using PBE, PBE0, UHF trial wave functions from

CRYSTAL09): correct low energy monoclinic structure for VO2; correct energy gap and characterization

of magnetic states for both phases, all in agreement with experiment (yes!)
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What is the mechanism of the transition in VO2 in DMC?

.

Structural distortion changes orbital hybridization and results

in strong charge localization within V dimers - rearranges

crystalline orbitals near Fermi surface, leading to strong

magneto-structural coupling. In particular, get strong intra-

dimer antiferromagnetic coupling in monoclinic VO2 which

drives system to a state made of spin-singlet dimers.

Clever bit: Calculate atomic charges 〈ni〉, spins 〈n↑
i
〉 and 〈n↓

i
〉, and magnetic

moments 〈n↑
i
−n↓

i
〉 (by counting electrons of a given spin in Voronoi polyhedra around

each nucleus). Calculate fluctuations such as 〈n↑
i
− 〈n↑

i
〉〉2 (zero in the atomic

limit; large for metallic systems), and spatial correlations through covariances such as
〈OiOj〉 − 〈Oi〉〈Oj〉. (Can also associate such quantities with U and hopping t).

Intersite charge, magnetic moment, and unlike-spin covariance plotted on left. All decay
with distance. Because of change in interatomic distances in monoclinic structure,
intra-dimer V-V covariance 2× that of rutile, inter-dimer V-V almost zero (dramatic
decrease in charge mobility −→ insulator!). Magneto-structural coupling associated with
substantial enhancement of intra-dimer charge fluctuations at expense of inter-dimer
charge fluctuations. Monoclinic VO2 forms weakly coupled spin-singlet V-V dimers
rather than long-range AFM order (confirmed by intersite magnetic covariance).

MIT in VO2 more complex than Peierls distortion (which just opens gap near Fermi surface). Strong

correlations resulting in different magnetic couplings in rutile/monoclinic phases important. Both

mechanisms will drive structural distortion, but amount of energy reduction due to intra-dimer singlet

formation of same order as Peierls distortion with no magnetic ordering. Electron correlations provide

crucial role in lowering E and opening large gap.

DMC provides high accuracy with no parameters.. can solve 50-year old problems. Good!
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High-Tc cuprates with DMC

Proper understanding of these materials still lacking after decades of research; clear that spin, charge,

and lattice degrees of freedom are active in the phase space near the superconducting state, but precise

roles still controversial. Difficult to probe experimentally and theoretically.

Wagner and Abbamonte did DMC

calculations of undoped La2CuO4,

CaCuO4, and a hypothetical unsupported

CuO2−
2 plane. Very accurate results with

no parameters for all basic properties:

spin coupling J , correlated gap, Cu

magnetic moment, and s-wave A1g and

d-wave B1g phonon frequencies.

arXiv:1402.4680 (2014)
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Superconductivity in cuprates with QMC
Experimentally B1g mode shifts and broadens on entering the superconducting state, while A1g does not. Wagner-Abbamonte DMC showed

modes differ through interaction with interlayer - comparing La2CuO4 (apical O), CaCuO4 (no apical O), and the pure CuO2−
2 plane (no interlayer

at all). In A1g mode interlayer prevents magneto-elastic coupling, mainly by shifting phonon frequency up. Plot bottom right of previous slide

shows Cu-O bonding/superexchange clearly affected by interlayer once phonon mode is activated. Thus DMC results show magneto-elastic coupling

highly dependent on supposedly inert plane layers - may help explain why different cuprates have very different Tc:

Doping

Some lattice degrees of freedom depend strongly on the magnetic state!

However - spin lattice coupling removed with 25% doping.

This is because hole introduced by doping sits on oxygen (which mediates the AFM ‘superexchange’

interaction). Upper valence band mainly O states for later 3d oxides (Ni, Cu, etc.).

[See my previous ESDG talks and various papers on manganites, KCuF3, Li-doped NiO, La2CuO4 etc.. This ancient one from 16 years ago is v.

interesting: www.tcm.phy.cam.ac.uk/∼mdt26/tmo/scm talk.html. Glad someone has finally done what I suggested! I’ve been far too lazy..]

“Despite all these years, the mechanism of high-Tc superconductivity is still highly controversial,

mostly due to the lack of exact theoretical computations on such strongly interacting electron systems”

[Wikipedia, ‘High-temperature superconductivity’, 2014] Is that really all they need? Cool..
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Quantum Monte Carlo in 2014

• Quantum Monte Carlo is in robust health, with groups from all over the world engaged in pushing

the boundaries of what can be done with this technique.

• Computers are now fast enough that the application of QMC to proper, genuine scientific and

technical problems is becoming routine.

• For many of these problems, QMC is the only known method which can normally be relied on to

get the answer right without an unreasonable amount of computing effort.

• Much work remains to be done - in code development as much as in running applications. Get in

touch if you’re interested..

Engage with the QMC community:

http://vallico.net/casinoqmc/ http://vallico.net/casino-forum/
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Or just come and visit..

http://vallico.net/tti/tti.html

http://vallico.net/sam/sam.html
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