
Perfect parallel scaling for quantum Monte Carlo
on hundreds of thousands of cores

Electronic Structure Discussion Group, January 2012

Mike Towler

TCM Group, Cavendish Laboratory, University of Cambridge

QMC web page: www.tcm.phy.cam.ac.uk/∼mdt26/casino2.html

Email: mdt26@cam.ac.uk

– Typeset by FoilTEX – 1



Parallel computing

From the mid-1980s until 2004 computers got

faster because of frequency scaling (more GHz).

However, faster chips consume more power, and

ever since power consumption (and consequently

heat generation) became a significant concern,

parallel computing has become the dominant

paradigm in computer architecture, particularly

with the advent of multicore processors - now

present even in most of your laptops.

• Here in TCM we develop the quantum Monte Carlo (QMC) method – in the form of the CASINO

code – to perform ultra-high accuracy electronic structure calculations. We cannot pretend this

is the cheapest technique in the world, and the study of anything other than simple systems

inevitably requires the use of parallel computers.

• The biggest machines in the world are now approaching a million processors. Some techniques

(such as DFT) have difficulty exploiting more than a thousand processors because of the large

amount of interprocessor communication required. This leads to an important question:

How does QMC scale with the number of processors?

And consequently, how many processors can we successfully exploit?

– Typeset by FoilTEX – 2



Parallel computing

From the mid-1980s until 2004 computers got

faster because of frequency scaling (more GHz).

However, faster chips consume more power, and

ever since power consumption (and consequently

heat generation) became a significant concern,

parallel computing has become the dominant

paradigm in computer architecture, particularly

with the advent of multicore processors - now

present even in most of your laptops.

• Here in TCM we develop the quantum Monte Carlo (QMC) method – in the form of the CASINO

code – to perform ultra-high accuracy electronic structure calculations. We cannot pretend this

is the cheapest technique in the world, and the study of anything other than simple systems

inevitably requires the use of parallel computers.

• The biggest machines in the world are now approaching a million processors. Some techniques

(such as DFT) have difficulty exploiting more than a thousand processors because of the large

amount of interprocessor communication required. This leads to an important question:

How does QMC scale with the number of processors?

And consequently, how many processors can we successfully exploit?

– Typeset by FoilTEX – 3



Increasing complexity and new terminology: CPUs

AMD quad-core processor

In the old days (when we originally wrote CASINO) parallel

machines were quite ‘simple’ things. That is, each computing

unit (usually referred to as a ‘node’ or a ‘processor’) ran a

separate copy of the program, and each had its own local

memory.

Nowadays, things are more complex. A computer may have

multiple nodes. And those nodes contain multiple sockets.

And the processors in those sockets contain multiple (CPU)

cores. The memory architecture is also more complex.

Node: a printed circuit board of some type, manufactured with multiple empty sockets into which

one may plug one of a family of processors.

Processor: this is the object manufactured e.g. by Intel or AMD. Generally there are ‘families’

of processors whose members have differing core counts, a wide range of frequencies and different

memory cache structures. One cannot buy anything smaller than a processor.

Core: the cores within the processor perform the actual mathematical computations. A core can do

a certain number (typically 4) of FLOPs or FLoating-point OPerations every time its internal clock

ticks. These clock ticks are called cycles and measured in Hertz (Hz). Thus a 2.5-GHz processor

ticking 2.5 billion times per second and capable of performing 4 FLOPs each tick is rated with a

theoretical performance of 10 billion FLOPs per second or 10 GFLOPS.

– Typeset by FoilTEX – 4



Increasing complexity and new terminology: memory
In complex modern systems we also need to understand how the memory is accessed.

Distributed memory : each processor has its own local private memory.

Shared memory : memory that may be simultaneously accessed by multiple cores with an intent to

provide communication among them or avoid redundant copies.

Modern machines containing ‘compute

nodes’ such as this Cray XT5 often

have a non-uniform memory architecture

(‘NUMA’). That is a processor can

access its own local memory faster than

non-local memory, that is, memory local

to another processor or memory shared

between processors.

Typically we might use shared memory on a ‘compute node’ which is simultaneously and quickly

accessible to all processor cores that are plugged into it. Data is sent between nodes using explicit

MPI commands and - in this case - the slower SeaStar Interconnect.

With CASINO, shared memory allows one to treat much bigger systems. A particular problem occurs

when using a ‘blip’ (B-spline) basis set to represent the orbitals; the blip coefficients for a large

systems can take up many Gb of memory (and this may exceed the amount locally available to each

core). Thus we may have e.g. a node containing two 6-core processors i.e. 12 cores with a single

copy of the blip coefficients in the shared memory available to all cores on that node.

– Typeset by FoilTEX – 5



State of the art: petascale computers

• A ‘petascale’ system is able to make arithmetic calculations at a sustained rate in
excess of a sizzling 1,000-trillion operations per second (a ‘petaflop’ per second).

• The first computer ever to reach the petascale milestone (in 2008) was the
Roadrunner at Los Alamos shown above. It contained 122400 cores achieving a
peak performance of 1.026 petaflops/s.

• One may consult the ‘Top 500 Supercomputers’ list at www.top500.org to see
who and what is currently winning. Current fastest (July 2011) is the K computer
at the Riken Institute in Japan (548352 cores, 8.162 petaflops/s).

– Typeset by FoilTEX – 6



A usable example: Jaguar

Jaguar is/was** a Cray XT5
machine at Oak Ridge National
Laboratory in Tennessee, USA.
It has a peak performance of
around 1.75 petaflops, and has
224256 AMD Opteron processor
cores, making it the third-fastest
computer in the world (January
2012).

It is made of 18,688 XT5 compute nodes. Each such node contains two 6-core
AMD Opteron processors and 16 Gb of memory. From CASINO’s point of view it is
thus a shared-memory machine with 12 cores per node. It was the fastest computer
in the world until October 2010.

ssh -X mdt26@jaguarpf.ccs.ornl.gov ; cd CASINO ; make Shm

runqmc -p 224256 --shmem=12 --walltime=6h30m

** [Jaguar currently being transformed into ‘Titan’: 18688 16-core Opteron nodes
(299008 cores), 32 Gb memory per node, and lots of GPUs (of which more later)].

– Typeset by FoilTEX – 7



What you need to know about QMC to understand this talk

V(x)

Ψinit
(x)

Ψ0
(x)

t

τ {

x

• Diffusion Monte Carlo (DMC): trial

many-body wave function can be

made to evolve towards correct

ground state wave function by

‘evolving it in imaginary time’.

• Wave function represented by

distribution in configuration space of

an ensemble of copies of the system

(each member of the ensemble is

called a ‘config’ or a ‘walker’).

• The ‘shape’ of the wave function

is changed by deleting configs that

move into high-energy regions, and

by duplicating ones that move into

low-energy regions, according to

some magic algorithm.

CASINO is parallelized by dividing the number of walkers over the cores

– Typeset by FoilTEX – 8



How is CASINO parallelized?
CASINO’s parallel capabilities are implemented largely with MPI which allows communication

between all cores on the system. A second level of parallelization useful under certain circumstances

(usually when the number of cores is greater than the number of configs) is implemented using

OpenMP constructs, which functions over small groups of e.g. 2-4 cores.

MPI (Message Passing Interface) is a language-independent API (application programming interface)

specification that allows processes to communicate with one another by sending and receiving

messages. It is a de facto standard for parallel programs running on computer clusters and

supercomputers, where the cost of accessing non-local memory is high.

Example: call MPI Reduce([input data], [output result], [input count],

[input datatype],[reduce function], ROOT, [User communication set], [error code])

By setting the ‘reduce function’ to ‘sum’, such a command may be used - for example - to sum a

vector over all cores, which is required when computing averages.

OpenMP is an API that supports shared-memory multiprocessing. It implements multithreading,

where the master ‘thread’ (a series of instructions executed consecutively) forks a specified number

of slave threads and a task is divided among them. The threads run concurrently, with the runtime

environment allocating threads to different cores. The section of code meant to run in parallel is

marked with a preprocessor directive that causes the threads to form before the section is executed:

!$OMP parallel

· · ·
!$OMP end parallel

– Typeset by FoilTEX – 9



Why DMC does not scale linearly with the number of cores

• In DMC, config population initially divided evenly between cores. Algorithm
not perfectly parallel since population fluctuates on each core; iteration time
determined by the core with the largest population. Necessary to even up config
population between cores occasionally (‘load balancing’).

• The best definition of ‘occasionally ’ turns out to be ‘after every move’, since this
minimizes the time taken by the core with the largest number of configurations
to finish propagating its excess population.

• From the CASINO perspective, what is a ‘config’ and how big is it? It is
a list of electron positions, together with some associated wave function- and
energy-related quantites. For the relatively big systems of interest, a config might
be from 1-10kb in size, and up to around five of them might need to be sent
from one processor to another. Thus messages can be up to 50kb in size (though
usually they are much smaller).

• Transferring configs between cores is thus likely to be time-consuming, particular
for large numbers of cores. Thus there is a trade-off between balancing the load
on each processor and reducing the number of config transfers.

– Typeset by FoilTEX – 10



Formal parallel efficiency

• Cost of propagating all configs in one iteration : TCPU ≈ AN
αNC
P

Here P is number of CPU cores, NC is number of configs, N is number of
particles, and α = 1 (localized orbs and basis) or 2 (delocalized orbs, local basis).
Add 1 to α for trivial orbs/large systems where determinant update dominates.

• Cost of load balancing : Tcomm ≈ B
√
NCPN3

Require TCPU � Tcomm as DMC algorithm perfectly parallel in this limit.

• Ratio of load balancing to config propagation time :

Tcomm

TCPU
=
A

B

P
3
2N

3
2−α

√
NC

- For α > 3/2 (which is true unless time to evaluate localized orbitals dominates),
the fraction of time spent on comms falls off with system size.

- By increasing NC fraction of time spent on comms can be made arbitrarily small,
but, in practice number of configs per core limited by available MEMORY.

- Memory issue is the main problem for very large systems or very large number of
cores, particularly when using a blip basis set.

– Typeset by FoilTEX – 11



Obvious ways to improve load balancing in CASINO

• Increase number of configs per core (without blowing the memory).

• Use weighted DMC (lwdmc keyword) to reduce branching (with the default weight limits of 0.5

and 2.0) and disable transfer or large arrays (such as inverse Slater matrices) between cores by

using the small transfer keyword.

Obvious ways to avoid blowing the memory in CASINO

• On architectures made up of shared memory nodes with multiple cores: allocate blips on these

nodes instead of on each core (make Shm to enable this, then runqmc --shmem).

• Use OpenMP - extra level of parallelization for loops scaling with number of electrons. Define

‘pools’ of small numbers of cores (typically 2-4). Parallelisation over configs maintained over

pools, but inside each pool work for each config is parallelized by splitting the orbitals over pools

(this reduces necessary memory per core). Then, each core in the pool only evaluates the value

of a subset of orbitals. That done, all cores within the pool communicate to construct the Slater

determinants, which are evaluated again in parallel using the cores in the pool. Gives ∼1.5×
speedup on 2 cores, ∼2× speedup on 4 cores.

To use, compile with ‘make OpenMP’, then run with e.g. on a 4-core machine ‘runqmc --nproc=2

--tpp=2’ where tpp means ‘threads per process’. Can also run with both Shm and OpenMP

(make OpenmpShm etc.).

• Use single precision blips keyword, the blip coefficients using single precision real/complex

numbers, which will halve the memory required.

– Typeset by FoilTEX – 12



How does CASINO scale?

Scaled ratio of CPU times in DMC statistics accumulation for various numbers of cores on Jaguar

using the September 2010 version of CASINO 2.6. System: one H2O molecule adsorbed on a

2D-periodic graphene sheet containing fifty C atoms per cell. For comparative purposes ‘ideal linear

scaling’ (halving of CPU time for double the number of cores) is shown by the solid black line. Both

blue and red lines show results for fixed sample size i.e. number of configs × number of moves

[fixed problem size = ‘strong scaling’]. However, blue line has fixed target population of 100 configs

per core (with an appropriately varying number of moves). Red line has fixed target population of

486000 (and constant number of moves) i.e. the number of configs per core falls with increasing

number of cores (from 750 to around 5).

– Typeset by FoilTEX – 13



New tricks to effectively reduce Tcomm to zero

Rendering the earlier formal analysis somewhat redundant, I discovered last year that
with a few tricks one can effectively eliminate all overhead due to config transfers,
and hence hugely improve the scaling (this is described in Petascale computing
opens new vistas for quantum Monte Carlo’, by me, Mike Gillan and Dario Alfè,
Psi-k Newsletter ‘Scientific Highlight of the Month’ Feb 2011).

The new algorithm involved:

(1) Analysis and modification of the procedure for deciding which configs to send
between which pairs of cores when doing load balancing (the original CASINO
algorithm for this originally scaled linearly with the number of cores – when you
need it to be constant – yet this was never mentioned in formal analyses!).

(2) The use of asynchronous, non-blocking MPI communications.

• To send a message from one processor to another, one normally calls blocking
MPI SEND and MPI RECV routines on a pair of communicating cores. ‘Blocking’
means that all other work will halt until the transfer completes.

• However, one may also use non-blocking MPI calls, which allow cores to continue
doing computations while communication with another core is still pending. On
calling the non-blocking MPI ISEND routine, for example, the function will return
immediately, usually before the data has finished being sent.

– Typeset by FoilTEX – 14



Decisions about config transfers: the redistribution problem

• At the end of every move we have a vector (of length equal to the number of cores) containing

the current population of configs on each core.

• Relative to a ‘target’ population, some cores will have an excess of configs, some will have the

right amount, and some will have a deficit.

• The problem is to arrange for a series of transfers between pairs of cores in the most efficient way

such that each core has as close to the target population as possible. Here ‘efficient’ means the

total number of necessary transfers and the size of those transfers is to be minimized.

OLD ALGORITHM: Requires repeated operations on the entire population vector, asking things like

‘what is the location of the current largest element?’ [Fortran: maxloc(popvector)]. This scales

linearly with the number of cores, and if you’re asking to find the largest element of a vector of

length 1 million and you do it a million times it starts to take some serious time. Any benefit from

obtaining the optimum list of transfers is swamped by the process of finding that optimum list.

MORAL: the algorithm is perfectly reasonable for a routine written in the years when no-one could

run on more than 512 cores; however, such things can come back and bite you in the petascale era.

SOLUTION

• Partition the cores into ‘redist groups’ of default size 500 and contemplate transfers only within

these groups. If e.g. one core has a deficit of 1,2,3,4. . . configs, then in a group of that size it is

highly likely that some other core will have a surfeit of 1,2,3,4.. configs, etc. Thus efficiency in

config transfers will hardly be affected by not considering the full population vector.

• To avoid imbalances developing in the group populations, the list of cores that belong to each

group is changed at every iteration (‘redist shuffle’).

– Typeset by FoilTEX – 15



Non-blocking asynchronous communication
A communication call is said to be non-blocking if it may return before the operation completes

(a local concept on either sender or receiver). A communication is said to be asynchronous if its

execution proceeds at the same time as the execution of the program (a non-local concept).

Mode Command Notes synchronous?

synchronous send MPI SSEND Message goes directly to receiver. synchronous

Only completes when receive begins.

buffered send MPI BSEND Message copied to a ‘buffer’. asynchronous

Always completes regardless of receiver.

standard send MPI SEND Either synchronous or buffered both/hybrid

ready send MPI RSEND Assumes the receiver is ready. neither

Always completes regardless.

receive MPI RECV Completes when a message has arrived

MPI also provides non-blocking send (MPI ISEND) and receive (MPI IRECV) routines. They return

immediately, at the cost of you not being allowed to modify the sent vector/receiving vector until

you execute a later MPI TEST or MPI WAIT call (or MPI TESTALL/MPI WAITALL for multiple

communications) to check completion. In the meantime, the code can do some other work.

• Non-blocking routines allow separation of initiation and completion, and allow for the possibility

of comms and computation overlap. Normally only one comm allowed at a time; non-blocking

functions allow initiation of multiple comms, enabling MPI to progress them simultaneously.

• Non-blocking comms, when used properly, can provide a tremendous performance boost to parallel

applications.

– Typeset by FoilTEX – 16



Non-blocking send operation

– Typeset by FoilTEX – 17



New DMC algorithm
MOVE 1

- Move all currently existing configs forward by one time step

- Compute the multiplicities for each config (the number of copies of each

config to continue in the next move).

- Looking at the current populations of config on each processor, and at the

current multiplicities, decide which configs to send between which pairs of

cores, and how many copies of each are to be created when they reach

their destination.

- Sending cores initiate the sends using non-blocking MPI_ISENDs; receiving

cores initiate the receives using non-blocking MPI_IRECVs. All continue

without waiting for the operations to complete.

- Perform on-site branching (kill or duplicate configs which require it on any

given processor).

MOVE 2 AND SUBSEQUENT MOVES

- Move all currently existing configs on a given processor by one time step (not

including configs which may have been sent to this processor at the end of the

previous move).

- Check that the non-blocking sends and receives have completed (they will

almost certainly have done so) using MPI_WAITALL. When they have, duplicate

newly-arrived configs according to their multiplicities and move by one time

step.

- Compute the multiplicities for each moved config.

- Continue as before

– Typeset by FoilTEX – 18



Any improvement in the load-balancing time?

Number of cores Time, CASINO 2.6 (s.) Time, Modified CASINO (s.)
648 1.00 1.05

1296 3.61 1.27
2592 7.02 1.52
5184 18.80 3.06

10368 37.19 3.79
20736 75.32 1.32
41472 138.96 3.62
82944 283.77 1.04

Table 1: CPU time taken to carry out operations associated with redistribution of
configs between cores in CASINO 2.6 (2010) and in my modified version, during one
twenty-move DMC block for a water molecule adsorbed on a 2d graphene sheet.

– Typeset by FoilTEX – 19



Perfect parallel efficiency..

Scaled ratio of CPU times in DMC statistics accumulation for various numbers of cores on Jaguar

using both the September 2010 version of CASINO 2.6 (red line) and the current public release

CASINO 2.8 (blue line). System: one H2O molecule adsorbed on a 2D-periodic graphene sheet

containing fifty C atoms per cell. For comparative purposes ‘ideal linear scaling’ (halving of CPU

time for double the number of cores) is shown by the solid black line. In both cases there is a

fixed target population of 100 configs per core (with an appropriately varying number of moves to

maintain constant number of configuration space samples).

– Typeset by FoilTEX – 20



..if you give the processors enough to do

Similar graph for the same number of configuration space samples, but using a fixed target of 486000

for total config population and a fixed number of moves, rather than a fixed target per core.

Note that fixing the total target population can introduce considerable inefficiency at higher core

counts (since cores end up without enough work to do as the number of configs per node decreases).

This graph should not be looked on as representing CASINO’s general scaling behaviour. The

inefficiency can generally be decreased by increasing the number of configs per core.

– Typeset by FoilTEX – 21



Can we push it to more than 100000 cores?

0 20000 40000 60000 80000 1e+05 1.2e+05
Number N of processor cores (JaguarPF)

0

20000

40000

60000

80000

1e+05

1.2e+05

[C
PU

 ti
m

e 
(2

59
2 

co
re

s)
 / 

C
PU

 ti
m

e 
(N

 c
or

es
)]

 *
 2

59
2

Ideal linear scaling
CASINO 2.6
CASINO 2.8

FIXED TARGET POPULATION

PER CORE

Yes! Not even the hint of a slowdown on 124416 cores.. Reasonable to assume we
could use all 224256 cores of the Jaguar machine, if we could be bothered to sit
through the queueing time.

– Typeset by FoilTEX – 22



How many cores can we exploit?

• Because QMC is a sampling technique then, for any given system, there is a maximum number

of cores you can exploit if you insist that your answer has no less than some required error bar

and that it has a minimum number of moves (so we can reblock the data).

• E.g. we require 1000000 random samples of the wave function configuration space to get the

required error bar ε. Let’s say we need at least 1000 sampling moves to accurately reblock the

results. And let’s say we have a 1000 processor computer. In that case only one config per node

is required to get the error bar ε (even though the available memory may be able to accommodate

many more than this).

• We now buy a 2000 processor machine. How do we exploit it to speedup the calculation? We

can’t decrease the number of moves, since then we can’t reblock. It is wasteful to just run the

calculation anyway, since then the error bar will become smaller than we require. We can split

each config over two nodes, and use OpenMP to halve the time taken to propagate the configs,

but let’s say we find that OpenMP doesn’t really work very well over more than two cores.

• How then do we exploit a 4000 processor machine? Answer - we can’t. The computer is simply

too big for the problem if you don’t need the error bar to be any smaller.

– Typeset by FoilTEX – 23



Is non-blocking communication really asynchronous?
Not necessarily! MPI standard doesn’t require non-blocking calls to be asynchronous. Two problems:

(1) Hardware may not support asynchronous communication. Some networks provide communication

co-processors that progress message passing regardless of what application program does (e.g.

Infiniband, Quadrics, Myrinet, Seastar and some forms of TCP that have offload engines on the

NIC). Then communication can be started by the computation processor which in turn gives task of

sending data over the network to the communication processor.

(2) Unfortunately, even if the hardware supports it, people implementing MPI libraries may not bother

to code up truly asynchronous transfers (since the standard allows them not to!). MPI progress is

actually performed within the MPI TEST or MPI WAIT functions. This is cheating!

Test: initiate MPI IRECV with large 80Mb message, then do some computation for a variable amount of time. If comms really do overlap with
computation then total runtime will be constant so long as computation time is smaller than comms time.
Ref: Hager et al. http://blogs.fau.de/hager/files/2011/05/Hager-Paper-CUG11.pdf

If your MPI doesn’t provide true asynchronous progress, then some form of periodic poll through

a MPI TESTALL operation may be required to achive optimal performance. Can also overlap

computation and comms via mixed-mode OpenMP/MPI - use dedicated communication thread.

– Typeset by FoilTEX – 24



The future? GPUs

• A GPU (graphics processing unit) is a specialized processor designed to answer the demands of

real-time high-resolution 3D-graphics compute-intensive tasks (whose development was driven by

rich nerds demanding better games). They are produced by big companies such as Nvidia and

ATI.

• Decent modern GPUs in machines with only a few CPU-cores are engineered to perform hundreds

of computations in parallel. In recent years there has been a trend to use this additional processing

power to perform computations in applications traditionally handled by the CPU.

• Modern GPUs have evolved into highly parallel multicore systems allowing very efficient

manipulation of large blocks of data. This design is more effective than general-purpose

CPUs for algorithms where processing of large blocks of data is done in parallel.

• To do general purpose computing on GPUs, people originally had to ‘pretend’ to be doing

graphics operations and learn things like OpenGL or DirectX (and so very few people bothered).

Nowadays, new architectures such as CUDA allow people to operate GPUs using more familiar

programming languages, and their use is booming.

• In fact, it might be said, that computing is evolving from ‘central processing’ on the CPU to

‘co-processing’ on the CPU and GPU. Three of the five fastest machines in the top 500 - including

the Chinese Tianhe-1 that is currently in second place (and faster than Jaguar) - use GPUs in

their design. Jaguar itself is currently being upgraded to use them.

The highly parallel nature of Monte Carlo algorithms suggest that CASINO might benefit considerably

from GPU co-processing, and so one of my jobs this year is to explore the possibility of doing just

that.

– Typeset by FoilTEX – 25



Programming for Nvidia GPUs: CUDA
CUDA (Compute Unified Device Architecture) is a parallel

computing architecture developed by Nvidia. It is the computing

engine in Nvidia GPUs that is accessible to software developers

through variants of industry-standard programming languages.

Programmers typically use ‘C for CUDA’ (C with Nvidia

extensions and certain restrictions) to code algorithms for

execution on the GPU.

CUDA gives developers access to the virtual instruction set

and memory of the parallel computational elements in CUDA

GPUs so that they become accessible for computation like

CPUs. Unlike CPUs however, GPUs have a parallel throughput

architecture that emphasizes executing many concurrent threads

slowly, rather than executing a single thread very quickly.

CASINO is written in Fortran95, so we would like to code in Fortran directly, rather than the

officially-supported C. Fortunately (see e.g. www.pgroup.com/resources/cudafortran.htm) there

are available third-party solutions such as PGI CUDA Fortran, so one can do things like this:

REAL :: a(m,n) ! a instantiated in host memory

REAL,DEVICE :: adev(m,n) ! adev instantiated in GPU memory

adev = a ! Copy data from a (host) to adev (GPU)

a = adev ! Copy data from adev (GPU) to a (host)

Cray are also doing some interesting things:

www.hpcwire.com/hpcwire/2011-05-24/cray unveils its first gpu supercomputer.html

– Typeset by FoilTEX – 26



I don’t have access to a petascale computer (sulk..)

So you have three options:

(1) Don’t do QMC calculations on very big systems.

(2) Wait for 10 years until everyone has a petascale computer under their desk.

(3) Unless you happen to be North Korean or Iranian or otherwise associated with
the Axis of Evil, apply for some time on one. I did. You might consider, for example:

The INCITE program

www.doeleadershipcomputing.org/guide-to-hpc/

The European DEISA program

www.deisa.eu

– Typeset by FoilTEX – 27



Conclusions

• In general it seems to be the case that, following my modifications, CASINO is
now linear scaling with the number of cores providing the problem is large enough
to give each core enough work to do.

• This should normally be easy enough to arrange, and if you find yourself unable
to do this, then you don’t need a computer that big.

• On typical machines like Jaguar, very large priority is given to jobs using large
numbers of cores (where ‘large’ means greater than around 40000). Being allowed
to use the machine in the first place increasingly means being able to demonstrate
appropriate scaling of the code beforehand. CASINO can do this; many, even
most, other techniques cannot.

• People need to start rewriting their codes to use GPUs, if they haven’t already.

• Massively parallel machines are now increasingly capable of performing highly
accurate QMC simulations of the properties of materials that are of the greatest
interest scientifically and technologically.

– Typeset by FoilTEX – 28


