Cambridge

August 4th 2004

Materials for nuclear waste immobilization: The effect of point defects in zircon

Miguel Pruneda

Department of Earth Sciences University of Cambridge

Cambridge Centre for Ceramic Immobilisation

Camb<u>ridge</u>

August 4th 2004

Radiation damage

ESDG/TC

 \mathcal{M}

Zircon: model study: old natural samples

August 4th 2004

Why first principles?

• Atomistic description

ESDG/TC

 \mathcal{M}

MD simulations

Complex structures
 Empirical potentials

Complex chemistry

Zr, Ti, Sn, Ca, La, Gd,...

ESDG/TC M Swelling in zircon (ZrSiO₄)

Total: ~20% Crystalline: ~5% anisotropic

X-Rays... Crystalline swelling: lattice parameters vs dose

August 4th 2004

Cambridge August 4th 2004 M IR, Raman and NMR spectroscopies

I. Farnan & E.K.H Salje, JAP 89, 2084 (2001)

FIG. 2. Series of ²⁹Si MASNMR spectra of zircons with increasing accumulated α dose (upwards). Increasing numbers indicate the dose×10¹⁸ α events/g and refer to: Moroto, UG9A, Cam26, Cam25, Z5, Sand9, Ti8, and Sand4, respectively. Spectra were acquired as described in the text and referenced to external TMS.

M. Zhang & E. K. H Salje, J. Phys. Condens. Matter 13, 3057 (2001)

Cambridge August 4th 2004

M Localized defects in radiation-damaged zircon (Rios et. al. Acta Cryst. (2000) B56, 947)

X-ray diffraction experiments in natural samples. (1.8x10¹⁸ α -decay/g)

- SiO4 tetrahedra remain essentially undistorted
- Larger anisotropic displacement parameters found for Zr and O atoms

DFT calculations:

High values of the formation energies for all defects, except oxygen interstitial

Formation energies for a choice of chemical potentials

J.-P. Crocombette, Phys. Chem. Minerals 27, 138 (1999)

Cambridge

August 4th 2004

Our method

Linear–scaling DFT based on NAOs (Numerical Atomic Orbitals)

P. Ordejon, E. Artacho & J. M. Soler, Phys. Rev. B 53, R10441 (1996)

- Born-Oppenheimer (relaxations, mol. dynamics)
 DFT (LDA, GGA)
- Pseudopotentials (norm conserving, factorised)
- Numerical atomic orbitals as basis (finite range)
- Numerical evaluation of matrix elements (3D grid)

Implemented in the SIESTA program

D. Sanchez-Portal, P. Ordejon, E. Artacho & J. M. Soler Int. J. Quantum Chem. 65, 453 (1997)

Cambridge August 4th 2004

Intrinsic point defects and volume swelling in ZrSiO₄

• Radiation cascades & defect accumulation

~ 10^{21} defects/cm³

Si ...0.2% swelling!!

- Tetragonal *I4₁/amd* space group
- BCC unit cell with four formula units.
- Structural parameters: *a*, *c*, *u*, *v*

Alternating SiO₄ tetrahedra & ZrO₈ dodecadeltahedra

Cambridge August 4th 2004

Playing with the "concentration of defects"

Supercell approach:

Repetitions of the unit cell

(Periodic super-structure of defects)

1x1x1	
1x1x2	
2x2x1	
2x2x2	

(24 atoms)(48 atoms)(96 atoms)(192 atoms)

Lattice relaxation

Low-concentration limit

atomic relaxation only!

August 4th 2004

ESDG/TC M

The catalogue of defects

- Interstitials: O_i , Si_i , Zr_i
- Vacancies: V_O , V_{si} , V_{Zr}
- Antisite defects: Zr_{Si} & Si_{Zr}
- Frenkel pairs: O_{FP} , Si_{FP} & Zr_{FP}

Different charge-states:

August 4th 2004

M

Possible defects:

O & Si interstitials Zr_{Si} anti-site

ESDG/TC M Swelling as a function of the concentration

- Almost linear behavior
- Considerable anisotropy
- Effect of disorder

Cambridge

August 4th 2004

Oxygen interstitial

Neutral defect has a dumbbell structure similar to ZrO2.

Cambridge

August 4th 2004

Silicon interstitial

Local Vibrational Modes

IR active at 729 cm⁻¹ (O_i) 743 cm⁻¹ (Si_i)

August 4th 2004

ESDG/TC M

Simulation of NMR spectra

Combining methods: SIESTA+PARATEC

Experiments in damaged samples

FIG. 2. Series of ²⁹Si MASNMR spectra of zircons with increasing accumulated α dose (upwards). Increasing numbers indicate the dose×10¹⁸ α events/g and refer to: Moroto, UG9A, Cam26, Cam25, Z5, Sand9, Ti8, and Sand4, respectively. Spectra were acquired as described in the text and referenced to external TMS.

Chemical shifts due to swelling?

O: -170.1 (-170) Si: -78.6 (-81.5)

-	O_i	Si_i	$\mathrm{Zr}_{\mathrm{S}i}$
Si1		-7.5	
Si5			-82
Si6	-84	-76	
Si7	-81	-47	-82
Si8	-112	-75	-81
Si9	-86	-86	
3 .			
		*	
	O _i	Si _i	$\mathrm{Zr}_{\mathrm{S}i}$
Zr1	O _i -24	Si_i	Zr_{Si} 49
Zr1 Zr2	O _i -24 -38	-54	Zr _{Si} 49 -39
Zr1 Zr2 Zr3	O _i -24 -38 65	-54 -180	Zr _{Si} 49 -39 -65
Zr1 Zr2 Zr3 Zr4	O _i -24 -38 65 -30	-54 -180 -404	Zr _{Si} 49 -39 -65 -39
Zr1 Zr2 Zr3 Zr4 Zr5	O _i -24 -38 65 -30	Si _i -54 -180 -404 -121	Zr _{Si} 49 -39 -65 -39

Cambridge

August 4th 2004

	O_i	Si_i	$\mathrm{Zr}_{\mathrm{S}i}$
01	282		
O9			148
O10	196	117	148
O11	154	167	158
O12	199	224	158
O13	158	149	464
O14	164	244	464
O15	162	201	464
O16	169	322	464
O17	168	212	158
O18	183	178	158
O19	165	95	148
O20	178	203	148
O21	177	172	166
O22	176	161	166
O23	144	166	166
O24	166	188	166
O25	169	114	

Cambridge

August 4th 2004

Formation Energies

$$E_f(\alpha, q) = E(\alpha, q) - \sum_i \mu_i \cdot n_i + q(\mu_e + E_V)$$

$$\mu_{Zr} + \mu_{Si} + 4\mu_{O} = \Delta G_{f} (ZrSiO_{4})$$

$$\mu_{Zr} + 2\mu_{O} \leq \Delta G_{f} (ZrO_{2})$$

$$\mu_{Si} + 2\mu_{O} \leq \Delta G_{f} (SiO_{2})$$

TABLE II: Calculated formation free energies (in eV) for $ZrSiO_4$, ZrO_2 , and SiO_2 .

Constituents	This work	Expt.
$\operatorname{Zr} + \operatorname{O}_2 \longrightarrow \operatorname{ZrO}_2$	-12.1	-11.5^{19}
$\mathrm{Si} + \mathrm{O}_2 \longrightarrow \mathrm{SiO}_2$	-9.6	-9.8^{20}
$\operatorname{Zr} + \operatorname{Si} + 2 \times \operatorname{O}_2 \longrightarrow \operatorname{ZrSiO}_4$	-22.3	-20.9^{20}

ESDG/TC M The stability tria

Cambridge

August 4th 2004

The stability triangle

Formation energies for neutral defects

Defect c	α 24	48	96	192	Ref. [6]
O_i	1.7	1.7	2.0	1.1	1.7
Si_i	14.5	15.6	15.5	16.4	17.0
Zr_i		17.1	17.6	15.9	18.0
V_{O}	6.3	6.4	6.5	6.9	5.6
$\mathrm{V}_{\mathrm{S}i}$	3.6	7.8	8.5		5.8
$V_{\mathbf{Z}r}$	7.4	7.7	7.9		5.9
O_{FP}		7.6			7.3
Si_{FP}		10.7			22.9
$\mathrm{Zr}_{\mathrm{F}P}$		13.2			24.0
$\mathrm{Si}_{\mathbf{Z}r}$		4.1			
$\mathrm{Zr}_{\mathrm{S}i}$	4.1	4.4		3.0	

More stable defects:

- Vacancies and interstitials of O
- Antisites

Converged in size

Values given at the point "A"...

August 4th 2004

Cambridge

Cambridge

August 4th 2004

Properties of charged defects

Negative-U behavior

• Gain in energy when a second electron/hole is captured.

 $2O_i^- \to O_i^0 + O_i^{2-}$ $2V_O^+ \to V_O^0 + V_O^{2+}$

• Strong ionic interaction for cation-defects (& charged FP)

$$X_i^0 + V_X^0 \longrightarrow X_i^{n-} + V_X^{n+}$$

TABLE IV: Energies for defect reactions, obtained from the formation energies of isolated defects.

	Energy (eV)	
Reaction	high-C	low-C
$O_i^0 + O_i^{2-} \longrightarrow 2O_i^-$	-0.4	-1.1
$V_O^0 + V_O^{2+} \longrightarrow 2V_O^+$	-1.7	-1.0
$O_i^0 + V_O^0 \longrightarrow O_i^- + V_O^+$	-0.5	-0.7
$O_i^- + V_O^+ \longrightarrow O_i^{2-} + V_O^{2+}$	1.6	1.4
$\mathcal{O}_i^0 + \mathcal{V}_O^0 \longrightarrow \mathcal{O}_i^{2-} + \mathcal{V}_O^{2+}$	1.1	0.7
$\mathrm{Si}_i^0 + \mathrm{Si}_i^{+2} \longrightarrow 2\mathrm{Si}_i^+$	-1.5	-1.0
$\mathrm{Si}_i^0 + \mathrm{Si}_i^{+4} \longrightarrow 2\mathrm{Si}_i^{2+}$	0.6	0.8
$\mathrm{Si}_i^{+2} + \mathrm{Si}_i^{+4} \longrightarrow 2\mathrm{Si}_i^{3+}$	-2.8	-2.6
$V_{Si}^0 + V_{Si}^{2-} \longrightarrow 2V_{Si}^{-}$	0.3	
$V_{Si}^0 + V_{Si}^{4-} \longrightarrow 2V_{Si}^{2-}$	1.7	
$\mathrm{Si}_i^0 + \mathrm{V}_{Si}^0 \longrightarrow \mathrm{Si}_i^- + \mathrm{V}_{Si}^+$	3.0	
$\operatorname{Si}_{i}^{0} + \operatorname{V}_{Si}^{0} \longrightarrow \operatorname{Si}_{i}^{2-} + \operatorname{V}_{Si}^{2+}$	7.2	
$\mathrm{Si}_{i}^{0} + \mathrm{V}_{Si}^{0} \longrightarrow \mathrm{Si}_{i}^{3-} + \mathrm{V}_{Si}^{3+}$	8.3	
$\mathrm{Si}_{i}^{0} + \mathrm{V}_{Si}^{0} \longrightarrow \mathrm{Si}_{i}^{3-} + \mathrm{V}_{Si}^{3+}$	12.0	
$\mathrm{Zr}_i^0 + \mathrm{Zr}_i^{+2} \longrightarrow 2\mathrm{Zr}_i^+$	-0.6	0.02
$\mathrm{Zr}_i^0 + \mathrm{Zr}_i^{+4} \longrightarrow 2\mathrm{Zr}_i^{2+}$	2.4	2.3
$\mathrm{Zr}_i^{+2} + \mathrm{Zr}_i^{+4} \longrightarrow 2\mathrm{Zr}_i^{3+}$	-0.2	0.1
$\mathcal{V}^0_{Zr} + \mathcal{V}^{2-}_{Zr} \longrightarrow 2\mathcal{V}^{Zr}$	0.2	
$V_{Zr}^0 + V_{Zr}^{4-} \longrightarrow 2V_{Zr}^{2-}$	1.3	
$\operatorname{Zr}_{i}^{0} + \operatorname{V}_{Zr}^{0} \longrightarrow \operatorname{Zr}_{i}^{-} + \operatorname{V}_{Zr}^{+}$	4.3	
$\operatorname{Zr}_{i}^{0} + \operatorname{V}_{Zr}^{0} \longrightarrow \operatorname{Zr}_{i}^{2-} + \operatorname{V}_{Zr}^{2+}$	9.0	
$\operatorname{Zr}_{i}^{0} + \operatorname{V}_{Zr}^{0} \longrightarrow \operatorname{Zr}_{i}^{3-} + \operatorname{V}_{Zr}^{3+}$	11.7	
$\operatorname{Zr}_{i}^{0} + \operatorname{V}_{Zr}^{0} \longrightarrow \operatorname{Zr}_{i}^{4-} + \operatorname{V}_{Zr}^{4+}$	14.3	

Cambridge

August 4th 2004

Alternative gate dielectrics

Device current drive is proportional to the oxide capacitance per unit area; thus, the best way to increase the drive current and thereby achieve high performance is to reduce the equivalent oxide thickness (EOT)

Scaling of the gate-oxide thickness: Roadmaps vs. actual trends.

To reduce the gate leakage current:

- the dielectric must be physically thick
- 2. it must have reasonably large band offsets to Si

ESDG/TC M Dielectric Constants of Zr Silicates

Cambridge

August 4th 2004

Vertically scaled MOSFET gate stacks and junctions: How far are we likely to go?

"Materials such as HfO₂ and ZrO₂, having dielectric constants of about 15 and offsets of about 1.5 eV, have the potential of meeting the long-term leakage requirements. Their silicates have almost the same barrier height, nearly as high a dielectric constant, potentially lower charge levels, and much better thermal stability; thus, *they* may be even better candidates."

G. – M. Rignanese, et. al. PRL 89,117601 (2002)

August 4th 2004

Band-Offsets

In the interface, it is required a high tunneling barrier to both electrons and holes.

FIG. 12. Band alignment at (a) a t-ZrO₂(001)/Si(100)-2×1 interface with H-passivated Zr and (b) a t-ZrO₂(001)/Si(100) interface with bridging oxygen at the interface.

R. Puthenkovilakam *et. al.* PRB 69 155329 (2004) Band alignment at ZrSiO4(001)/Si(100) interface. (No Zr d states in the gap)

August 4th 2004

ESDG/TC M Charged defects!!

The dielectric cannot contain traps that would promote trapassisted tunneling or locally uncompensated charges that would degrade channel mobility.

The conduction in the dielectric must be purely electronic, not ionic, and preferably by electrons only.

ESDG/TC *M Transition Energies* $E_{\alpha}(q/q') = [E_{f}(\alpha,q) - E_{f}(\alpha,q')]/(q'-q)$

- Acceptor levels for O_i, V_{Si} and V_{Zr} that can trap electrons from the bottom of the silicon valence band.
- Donor level of V_o can trap holes injected from silicon.

ESDG/TC M

Conclusions

- We have studied the effect of high concentration of point defects in ZrSiO4.
- A roughly linear dependence between swelling and the defect concentration of periodically repeated defects was obtained.
- Based on experimental evidence of anisotropic lattice expansion, we have selected a set of defects as good candidates to be responsible of the swelling: O_i, Si_i, and Zr_{Si}.
- Interstitials and vacancies of oxygen, and the antisite Zr_{si} are the most stable defects.
- There is a strong tendency towards ionization, and a negative-U behavior is observed.

Cambridge

August 4th 2004

Thanks to

Emilio Artacho, T. D. Archer, Kostya Trachenko, Martin Dove, Ian Farnan, Laurent Le Polles, Sharon Ashbrook, Jonathan Yates, Greg Lumpkin, Susana Rios, Ming Zhang

NATURAL ENVIRONMENT RESEARCH COUN

