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composite band (d >1)



entangled composite band



Recent developments in electronic Wannier functions:

N. Marzari and D. Vanderbilt, “Maximally localized Wannier functions for 
composite energy bands,” PRB 56, 12847 (1997)

I. Souza, N. Marzari and D. Vanderbilt, “Maximally localized Wannier
functions for entangled energy bands,” PRB 65, 035109 (2001)



“Lattice Wannier functions” are to phonons what 
Wannier functions are to Bloch states

consider an isolated band in 1D (a=1)
ψk(x) = exp(ikx) uk(x)

orthonormal basis set for same space
•localized around lattice site n
•related by lattice translations
•definite point symmetry 

ψk(x) ∝ Σn exp(ikn) wn(x) 
(Bloch sum of localized “orbitals”)
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bands carry symmetry labels
(irreducible representations of space groups)

lattice translations, inversion through atom

Wannier functions can have definite 
symmetry properties
consistent with symmetry labels of bands

on atoms:
“s” orbitals (even under x → -x): Γg, Xg

“p” orbitals (odd under x → -x): Γu, Xu
midway between atoms:
“s” orbitals (even under x → -x): Γg, Xu

“p” orbitals (odd under x → -x): Γu, Xg
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explicit construction by transform
wn(x) = (1/2π) ∫ dk exp(ikn) ψk(x) 

nonuniqueness: phase ambiguity of ψk(x) → exp(iφ(k)) ψk(x) 
•uk is a smooth function of k in the extended zone scheme
•symmetry

measure of localization: “spread functional” Ω
∫dx (x-xn)2 wn(x)2 is a functional of φ(k): Ω[φ(k)]
minimize wrt φ(k)

Marzari and Vanderbilt, PRB 56, 12847 (1997)
discretize in k-space
numerically compute ψk(x) (arbitrary phases)
numerically optimize Ω[φ(k)]



Composite bands (d > 1)

ψkn(x), n = 1, Nb

phase ambiguity generalizes to 
unitary transformation Unm(k)
“gauge transformation”

ψkn(x) → Σ Unm(k) ψkm(x) 

Marzari and Vanderbilt covered this case as well
note: decompose Ω = ΩI + Ω
ΩI is invariant under gauge transformation: functional of subspace
(smallest when {ukn(x)} is independent of k)
minimize Ω
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Now, for phonons

•phonon notation
•1D example for isolated band
•entangled bands
•implementation in ABINIT



n atoms per unit cell in d dimensions

normal modes of vibration around equilibrium
assume Bloch form
for d = 1:
umκ(k,j) = Re[Mκ

-1/2 uκ(k,j) exp(i(kma-ω(k,j)t))]

m labels lattice vector (1D)
κ labels atom in unit cell
k is a wavevector in 1st BZ
j labels the branch (j=1,…,nd)

nd x nd dynamical matrix at each k
each eigenvector: nd complex numbers uκ(k,j) 



unstable modes
If the crystal structure is an extremum but not a 
local minimum, then one or more of the eigenvalues of the
dynamical matrix will be negative

The frequency ω (the square root of the eigenvalue) of that
mode will be imaginary, and for plotting the dispersion relation,
is taken as negative

The presence and nature of unstable modes shows that the
structure considered is energetically unstable against certain
distortions, and unstable modes are a central feature of the 
“soft-mode” theory of structural phase transitions. The main
motivation of the present work is to construct subspaces that
contain the unstable modes.



Example:
1D chain with two atoms per cell (M1= M2=1)
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2 x 2 dynamical matrix at each k
each eigenvector: 
2 complex numbers [u1(k,j) u2(k,j)] 
snapshot at t=0
umκ(k,j) = Re[uκ(k,j) exp(i(kma))]
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transform to lattice Wannier functions

(note: φ(k) was constrained to produce definite point symmetry;
consistency with Γg−Xu → must be even around center of long bond)

atomic displacement pattern is even around this point



terrible localization
this is inevitable given the change of character
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entangled bands
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Souza, Marzari and Vanderbilt PRB 65, 035109 (2001)
single band =  linear combination of bands in energy window
(e.g. containing the two bands shown)
optimize ΩI
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suppose we want to reproduce part of a band exactly
inner window: subspace at those k is fixed
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[u1, u2r + I u2i]
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ferroelectric perovskites

LO-TO splitting: constraint just on TO bands



Implementation in ABINIT
uses output of IFC, crystal structure info

user chooses symmetry type of LWF
outer energy window (default: whole space)
inner energy window (or other constraints)

compute quadratic terms in effective Hamiltonian

generality? (nonsymmorphic space groups…)
more automation  (consider all symmetry types…)
other measures of localization more relevant?
release orthonormality of LWFs?
efficiency?



Figures
g-g LWF
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g-u LWF

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9

Series1

Series2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4

Series1

Series2

g-g LWF

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9

Series1

Series2


