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Time scales for dynamical relaxation to the
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We illustrate through explicit numerical calculations how the Born rule probability
densities of non-relativistic quantum mechanics emerge naturally from the particle
dynamics of de Broglie–Bohm pilot-wave theory. The time evolution of a particle
distribution initially not equal to the absolute square of the wave function is calculated
for a particle in a two-dimensional infinite potential square well. Under the de Broglie–
Bohm ontology, the box contains an objectively existing ‘pilot wave’ which guides
the electron trajectory, and this is represented mathematically by a Schrödinger wave
function composed of a finite out-of-phase superposition of M energy eigenstates (with
M ranging from 4 to 64). The electron density distributions are found to evolve naturally
into the Born rule ones and stay there; in analogy with the classical case this represents
a decay to ‘quantum equilibrium’. The proximity to equilibrium is characterized by the
coarse-grained subquantum H -function which is found to decrease roughly exponentially
towards zero over the course of time. The time scale t for this relaxation is calculated
for various values of M and the coarse-graining length 3. Its dependence on M is found
to disagree with an earlier theoretical prediction. A power law, t ∝ M−1, is found to be
fairly robust for all coarse-graining lengths and, although a weak dependence of t on 3 is
observed, it does not appear to follow any straightforward scaling. A theoretical analysis
is presented to explain these results. This improvement in our understanding of time
scales for relaxation to quantum equilibrium is likely to be of use in the development of
models of relaxation in the early Universe, with a view to constraining possible violations
of the Born rule in inflationary cosmology.

Keywords: de Broglie–Bohm theory; relaxation to quantum equilibrium; Born rule

1. Introduction

The Born rule is the fundamental connection between the mathematical
formalism of quantum theory and the results of experiments. It states that
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Time scales for dynamical relaxation 991

if an observable corresponding to a Hermitian operator Â is measured in a
system with pure quantum state |J〉, then the probability of an eigenvalue
li will equal 〈J|P̂ i|J〉, where P̂ i is the projection onto the eigenspace of Â
corresponding to li . For the case of measurement of the position x of—say—
an electron in a box, the probability density at time t for finding the electron
at x is r(x, t) = |J(x, t)|2. The Born rule is normally presented as a postulate,
though attempts to derive it from more fundamental principles have a long
history. There has, for example, been much recent work on deriving the Born rule
within the framework of the many-world interpretation of quantum mechanics,
but such derivations remain controversial (Saunders et al. 2010). According to
a recently published encyclopaedia of quantum mechanics ‘the conclusion seems
to be that no generally accepted derivation of the Born rule has been given to
date, but this does not imply that such a derivation is impossible in principle’
(Landsman 2008).

Born’s (1926) original paper and Heisenberg’s (1927) introduction of the
uncertainty relations the following year were instrumental in popularizing the idea
that Nature at the quantum level is fundamentally probabilistic. The idea that
J provides a complete description of a single electron strongly suggests that
the probabilistic interpretation of |J|2 expresses an irreducible uncertainty in
electron behaviour that is intrinsic in Nature. It is somewhat ironic therefore—and
unknown to most physicists—that Born’s rule emerges quite naturally out of the
dynamics of a deterministic process that was first outlined by de Broglie in 1927
(Bacciagaluppi & Valentini 2009). The process in question can be described by
a theory commonly referred to as the de Broglie–Bohm ‘pilot-wave’ formulation
of quantum mechanics (de Broglie 1928; Bohm 1952a,b; Bohm & Hiley 1993;
Holland 1993; Dürr & Teufel 2009; Riggs 2009; Towler 2009; Valentini 2009).
While the theory has attracted little serious interest ever since it was introduced—
possible reasons why being discussed in Cushing (1994), Bacciagaluppi &
Valentini (2009) and Towler (2009)—there has been a considerable resurgence of
activity in this area over the last 15 years or so (Towler & Valentini 2010). One of
the reasons for this is that, although the theory is completely consistent with the
full range of predictive–observational data in quantum mechanics, it also permits
violations of the Born rule and, at least in principle, this leads to the possibility
of new physics and of experimentally testable consequences (Valentini 1991a,b,
2002b, 2007, 2010).

The reason that the de Broglie–Bohm theory can get away with such an
apparently absurd contradiction of one of the basic postulates of quantum
theory is that it assumes orthodox quantum mechanics is incomplete, as Einstein
always insisted. It supposes that electrons, for example, are real ‘particles’ with
continuous trajectories and that the Schrödinger wave function represents an
objectively existing ‘pilot wave’ which turns out to influence the motion of the
particles. Since the particle density r and the square of the pilot wave are logically
distinct entities, they can no longer be postulated to be equal to each other.
Rather, their identity should be seen as dynamically generated in the same
sense that one usually regards thermal equilibrium as arising from a process
of relaxation based on some underlying dynamics (though with a dynamics on
configuration space rather than on phase space). Since pilot-wave theory features
a different set of basic axioms and conceptual structures, with event-by-event
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causality and the prospect of making predictions different from orthodox quantum
mechanics, it is better to think of it as a different theory, rather than a mere
‘interpretation’ of quantum mechanics.

In the pilot-wave formulation then, quantum mechanics emerges as the
statistical mechanics of the underlying deterministic theory. If the particle
distribution obeys the Born rule r = |J|2, then the system is said to be in
‘quantum equilibrium’. One finds in general that:

— Non-equilibrium systems naturally tend to become Born-distributed
over the course of time, on a coarse-grained level, provided the initial
conditions have no fine-grained microstructure (Valentini 1991a,b, 1992,
2001; Valentini & Westman 2005). The latter restriction is similar to that
required in classical statistical mechanics. An assumption about initial
conditions is of course required in any time-reversal invariant theory in
order to demonstrate relaxation (Valentini 2001; Valentini & Westman
2005).

— Once in quantum equilibrium a system will remain in equilibrium
thereafter, as was originally noted by de Broglie (1928). This property
is sometimes referred to as ‘equivariance’.

These two observations—along with a description of how these statements
about the objective make-up of the system might be translated into
statements about measurement—can be said to ‘explain’ or derive the Born rule.
Given the common general viewpoint referred to in the first paragraph, many
physicists might consider this surprising.

In this work, we present a numerical analysis of the time scale for the
relaxation of non-equilibrium distributions of particles to Born rule quantum
equilibrium using pilot-wave dynamics; the approach to equilibrium is monitored
by computing the coarse-grained subquantum H -function (see §1b and Valentini
1991a,b). The results we obtain are for a particle in a two-dimensional infinite
potential square well where the wave function is a finite superposition of M
eigenfunctions (where, depending on the choice of initial state, M ranges from
4 to 64). The initial particle distribution is deliberately chosen to be ‘out of
equilibrium’ by giving it the same form as the absolute square of the ground-state
wave function, that is, r = 4/p2 sin2 x sin2 y. This system—with fixed M—has
been studied before in this context by Valentini & Westman (2005) and by
Colin & Struyve (2010), but here we go further. Our recent development of a
new and much faster computer code (Towler 2010) allows us to study systems
with many more modes. The time scale t for relaxation is studied as a function of
the number of modes M (and, in consequence, of the number of nodal points in the
wave function) and as a function of the coarse-graining length 3. The dependence
of the relaxation time scale on these two quantities is compared with theoretical
predictions.

It is intended that calculations such as these will provide a next step
towards a detailed understanding of relaxation to quantum equilibrium in the
early Universe, with a view to constraining possible non-equilibrium effects
in cosmology. In Valentini (2010) it was shown, in the context of inflationary
cosmology, that corrections to the Born rule in the early Universe would in
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general have potentially observable consequences for the cosmic microwave
background (CMB). This is because, according to inflationary theory, the
primordial perturbations that are currently imprinted on the CMB were generated
at early times by quantum vacuum fluctuations whose spectrum is conventionally
determined by the Born rule. To make detailed predictions for possible anomalies
in the CMB, however, requires a precise understanding of how fast relaxation
would occur in, for example, a pre-inflationary era, as discussed in Valentini
(2010, §4a). It may be hoped that numerical studies, such as those reported in
this paper, will reveal how the relaxation time scale depends on general features
of the quantum state such as the number M of modes in a superposition. The
results could then be applied in future work to specific cosmological models.

(a) Pilot-wave dynamics

The basic ideas of de Broglie–Bohm pilot-wave theory may be simply
understood in a non-relativistic context.1 It is a non-local hidden-variables theory,
that is, the theory contains some variables which distinguish the individual
members of an ensemble that in orthodox quantum mechanics would be
considered identical since they all have the same wave function. These variables
are supposed to be ultimately responsible for the apparently random nature
of—for example—position measurements on the system. If, as required by some
interpretations, one were to suppose both that a complete description of the
system is afforded by J and that J has an objective, physical existence, one
might conclude from the results of measurements that Nature is intrinsically
probabilistic or random. In pilot-wave theory, by contrast, one supplements the
wave function description with ‘hidden variables’ by postulating the existence of
particles with definite positions, in addition to the wave. These particles then
follow deterministic trajectories (the nature of which can be deduced) and the
observed randomness is then understood to be a consequence merely of our
ignorance of the initial conditions, that is, the starting positions of the particles.

How does an individual quantum system evolve in time? The pilot wave evolves
at all times according to the usual time-dependent Schrödinger equation

ih̄
vJ

vt
=

M∑
i=1

− h̄2

2mi
V2

i J + V J.

As normally understood the evolving quantum system behaves like a ‘probability
fluid’ of density |J|2 = JJ∗ with an associated time-dependent quantum
probability current, defined in the usual manner as j = (h̄/m)Im(J∗VJ). In pilot-
wave theory, the particles have a continuous objective existence, with trajectories
that follow the streamlines of the current. Thus, their velocity is given by the
current divided by the density, that is, by

v = h̄
m

ImV ln J.

1In the high-energy domain, pilot-wave theory for bosons usually takes the form of a field theory,
while for fermions the best model invokes the Dirac sea. These models have a fundamental preferred
rest frame, with an effective Lorentz invariance emerging only in equilibrium. For recent progress,
see in particular Colin (2003), Colin & Struyve (2007) and Struyve (2010).
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Using the complex polar form of the wave function J = |J| exp[iS/h̄], we
can recover the (locally defined) phase S(x1, . . . , xN , t) of the wave by the
expression S = h̄Im ln J. The de Broglie guidance equation for the trajectories
xi(t) may then be written as

dxi

dt
= ViS

mi
. (1.1)

If, for an ensemble of particles with the same wave function, the initial positions
have a Born rule distribution, then (by construction) the law of motion of
equation (1.1) implies that the particle positions will have a Born rule distribution
at all times.

If desired, one may take the first time derivative to write the equation of motion
in the second-order form,

mi ẍi = −Vi(V + Q), (1.2)

where the quantum potential Q = − ∑
i(h̄

2/2mi)(V2
i |J|/|J|). In this approach,

the system acts as if there were a ‘quantum force’ −ViQ acting on the particles
in addition to the classical force −ViV . This second-order approach with a law of
motion given by equation (1.2) was proposed by Bohm in 1952. It may be referred
to as ‘Bohm’s dynamics’ in order to distinguish it from ‘de Broglie’s dynamics’
based on equation (1.1) (which was proposed by de Broglie in 1927). For de
Broglie, p = VS is the law of motion; for Bohm—at least the Bohm who wrote
the 1952 papers—it is an initial condition which can be dispensed with (clearly,
if we integrate the second-order formula we only recover de Broglie’s equation up
to some constant and this must be fixed for each trajectory by some boundary
condition, such as that implied by de Broglie’s equation for some time t0). Thus,
in principle, Bohm’s dynamics encompasses what one might call ‘extended non-
equilibrium’ where p �= VS in addition to r �= |J|2. Recent work (Colin et al. in
preparation) suggests that this ‘extended non-equilibrium’ is unstable and does
not relax in general; if this is correct, then it may be argued that Bohm’s second-
order dynamics is untenable as a fundamental theory as there would be no reason
to expect equilibrium in the Universe today, and that de Broglie’s dynamics is in
fact the fundamental formulation of pilot-wave theory.

Some additional relevant observations:

— The form of the guidance equation may be altered, while retaining
consistency with the Born rule distribution. This can be achieved by
adding a divergence-free term (divided by |J|2) to the right-hand side.
Such alternative velocity fields will not be discussed further here but have
been studied by, for example, Colin & Struyve (2010) and Timko & Vrscay
(2009). Note that such alternatives yield an equivalent physics only in
the equilibrium state; away from equilibrium, ‘subquantum’ measurements
would allow one to track the trajectories and so distinguish the true
velocity field (Valentini 2002b).

— Given the wave function for a system, the particle trajectories from any
starting point may be calculated using only the initial position of the
particle, rather than the position and the momentum. This is because
the guidance equation alone gives the particle velocity and consequently
the momentum for any initial position.

Proc. R. Soc. A (2012)
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Figure 1. Comparison of two trajectories with almost identical initial positions, shown individually
in (a) (1.5, 1.55) and (b) (1.5, 1.56) for clarity, then superimposed in (c) (both), in a system where
the wave function is a superposition of 16 energy eigenfunctions. The particles have been propagated
for time 4p in both cases—note the rapid divergence; (a) also shows a good example of particle
motion near to a node. The trajectory is seen to spiral around a moving nodal point before departing
from the vicinity of the node (similar behaviour is reported by Valentini & Westman (2005)). This
behaviour seems to be a major driving force behind relaxation. (Online version in colour.)

— Particle trajectories tend to be quite erratic, even with simple wave
functions that are superpositions of just a few energy eigenfunctions.
Figure 1 illustrates the divergence of neighbouring particle trajectories by
showing the paths of two particles with almost identical initial positions,
propagating according to pilot-wave dynamics.

How do numerical simulations demonstrating the Born rule for the
actual particle positions translate into statements about ‘measurement’? Ideal
measurements of position in pilot-wave theory are usually correct measurements
(they reveal the pre-existing position of the particle (see Holland 1993, p. 351))
and so the Born rule in position space follows immediately if the particles really
are distributed that way. For other kinds of measurements, a clear derivation
of the Born rule may be found in Holland (1993, §8.3.5) (noting that Holland
assumes the |J|2 distribution of actual particle positions as a postulate (see
Holland 1993, p. 67)). The key point is that, in a theory of particles, experimental
observations may be reduced to particle positions (dots on screens, apparatus
pointer positions, etc.)—where laboratory apparatus is treated as just another
system made of particles. As long as the Born rule holds for the joint distribution
of positions of all the particles involved (including the particles making up the
equipment), then the marginal probability distribution for, say, pointer positions
(obtained by integrating out the other degrees of freedom) will necessarily
match the predictions of quantum mechanics. In such a case, the distribution
of macroscopically recorded outcomes will be the same as in quantum theory.

(b) Quantum equilibrium

To demonstrate equivalence to quantum mechanics, it is usually simply
assumed that the actual distribution of particle positions is already supplied to

Proc. R. Soc. A (2012)
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t = 0
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t = 2p

 0  1  2  3

t = 4p

Figure 2. Computational model of the relaxation of an initially non-equilibrium distribution, r =
(4/p2) sin2 x sin2 y, evolving according to pilot-wave dynamics. The wave function is a superposition
of the first 16 eigenstates for a particle in a two-dimensional infinite potential square well. The
simulation was run for one period of the wavefunction, or 4p in these units. Even after such a
short period, significant relaxation towards equilibrium can be observed. (These results provide an
independent confirmation of those first obtained by Valentini & Westman (2005).) (Online version
in colour.)

us obeying the Born rule r = |J|2. In the approach taken here, where we try
to demonstrate why this is so, the Born rule distribution is considered to be
a special case and the particles are said to be in quantum equilibrium when in
this state. The dynamics described in §1a can just as well be used to describe
the evolution of non-equilibrium systems, whereas standard formulations cannot.
In general, in such studies, the probability density is found to approach the Born
rule distribution over time; it is said to relax to equilibrium (Valentini 1991a;
Valentini & Westman 2005). This relaxation is a consequence of the deterministic
motion of the particles and is not an intrinsically stochastic process (further
insight into relaxation has been obtained using techniques from Lagrangian fluid
dynamics (Bennett 2010)).

Figure 2 shows the results of a numerical simulation of this relaxation
process. It can be clearly seen that the particle distribution r rapidly comes
to resemble the (periodically repeating) time-dependent |J|2. The example
chosen—a superposition of 16 modes for a particle moving in two spatial
dimensions—is identical to that studied by Valentini & Westman (2005). The

Proc. R. Soc. A (2012)
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results obtained match theirs, thereby providing an important confirmation
of the previous results, with an independently written and implemented
numerical code.2

If we are to have any chance of observing new physics associated with quantum
non-equilibrium states (Valentini 1991a, 1992, 2001, 2002a,b, 2007, 2010), then
it is important to understand the time scale of this relaxation. To quantify the
proximity of a distribution to equilibrium, we may use an analogue of the classical
H -function (Valentini 1991a,b; Valentini & Westman 2005). This ‘subquantum
H -function’ is defined as

H =
∫

r ln
(

r

|J|2
)

dx. (1.3)

This quantity will be zero if and only if r = |J|2 everywhere, and will be positive
otherwise,3 making it a useful measure of proximity to equilibrium. Clearly, H is
simply the negative of the relative entropy of r with respect to |J|2.

A feature of this definition is that the ratio f = (r/|J|2) is preserved along
trajectories. To show this for f , consider the two continuity equations

vr

vt
+ V · (ẋr) = 0, (1.4)

which follows from the assumption that the actual trajectories follow the velocity
field given by equation (1.1), and

v|J|2
vt

+ V · (ẋ|J|2) = 0, (1.5)

which follows from the Schrödinger equation.
These two equations can be used to show that the ratio f = (r/|J|2) obeys

df
dt

≡ vf
vt

+ ẋ · Vf = 0. (1.6)

Thus, f will be preserved along trajectories. Thus, if the system is initially in
quantum equilibrium, with f = 1 everywhere, it will never depart from that state.
This can, of course, be seen directly from the fact that r and |J|2 obey identical
continuity equations: if r and |J|2 are initially equal, they will necessarily remain
equal at all times, since their time evolutions are determined by the same partial
differential equation.

For general (non-equilibrium) initial conditions, the exact value of the
H -function remains unchanged as the system evolves. However, if a coarse-
graining is applied to r and |J|2, that is, we replace r → r̄, |J|2 → |J̄|2

2It should be noted, however, that, in the code used by Valentini and Westman, the signs of the
initial phases in the wave function were chosen with the opposite convention to that given in their
text (where the latter agrees with equation (2.3)). Furthermore, in their plots of density functions,
the labels on the x- and y-axes were inadvertently exchanged.
3Assuming r and |J|2 are normalized, then

∫
(r − |J|2) dx = 0. Since r ln(r/|J|2) ≥ r − |J|2 for

any value of r and |J|2, with equality only when r = |J|2, then it is clear that H = ∫
r ln(r/|J|2)

dx ≥ 0. Thus, H is bounded from below by zero.
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Figure 3. The effects of coarse-graining for a 16-mode system at t = (p/2). (a) A snapshot of
the fine-grained density r on a 1024 × 1024 lattice; (b) the coarse-grained density derived from
averaging the fine-grained density over square cells containing 32 × 32 lattice points (in which
case we say the system has a ‘coarse-graining length 3 = 32’); (c) the result of a ‘smoothed’ coarse-
graining—using overlapping cells—which is more suitable for plotting graphs (Valentini & Westman
2005); (d) the same coarse-grained density as in (b) from a different perspective; (e) a close-up
of a single coarse-graining cell, at the level of individual lattice points—the irregular nature of
the underlying distribution at this level is clear; (f ) the same as (c) from a different perspective.
(Online version in colour.)

where the overbar indicates averaging over small coarse-graining cells, then the
coarse-grained H -function

H̄ =
∫

r̄ ln
(

r̄

|J̄|2
)

dx (1.7)

can be shown to be non-increasing (Valentini 1991a), on the assumption that
the initial state contains no fine-grained microstructure (as in the analogous
classical coarse-graining H -theorem). Furthermore, H̄ will in fact decrease, if the
initial velocity field varies with position across the coarse-graining cells (Valentini
1992, 2001). The decrease of H̄ represents a relaxation of the system towards
equilibrium, and formalizes an analogue of the intuitive idea of Gibbs: an initial
non-equilibrium distribution will tend to develop fine-grained microstructure and
become closer to equilibrium on a coarse-grained level. Heuristically speaking,
this may be thought of in terms of two ‘fluids’, with densities r and |J|2, that are
‘stirred’ by the same velocity field, and thereby tend to become indistinguishable
when coarse-graining is applied.

The effects of coarse-graining on the particle density at some randomly selected
time may be seen in figure 3.

For the 16-mode case, it was found in Valentini & Westman (2005) that H̄
decays approximately exponentially as

H̄ (t) ≈ H̄ 0e− t
t . (1.8)
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One of us (A.V.) has presented a theoretical estimate of the relaxation time scale
t obtained by considering the behaviour of the second time derivative of H̄ at
t = 0, where H̄ possesses a local maximum (Valentini 1992, 2001). As discussed
in more detail below, it was shown that, in the limit 3 → 0, t scales inversely
with 3. Further estimates, or simply dimensional analysis, then suggested the
rough formula (Valentini 2001)

t ∼ h̄2

3m
1
2 (DE)

3
2
. (1.9)

Here, 3 is the length of the coarse-graining cells and DE is the energy spread of the
wave function. For reasonable values of 3, this estimate was in rough agreement
with the numerical value (Valentini & Westman 2005).

However, because H̄ has a local maximum at t = 0, the estimate on the right-
hand side of equation (1.9)—obtained from the second time derivative of H̄ at
t = 0—can only define a time scale that is valid close to t = 0. As we shall see,
it cannot properly represent the time scale t associated with the subsequent
(approximately) exponential decay. The results of this paper in fact show a scaling
of t with DE that disagrees with equations (1.9)—but which is in agreement with
an improved estimate discussed below.

The question of how t varies with the number of modes was not investigated
by Valentini & Westman (2005) owing to computational difficulties. That gap is
filled in this paper.

2. Numerical simulations

In this work, we compute the dependence of the relaxation time t on the coarse-
graining length 3 and energy spread DE through explicit numerical simulations.
An initially non-equilibrium probability density in a two-dimensional infinite
potential square well is evolved according to pilot-wave dynamics, using a
wave function consisting of an out-of-phase superposition of the first M energy
eigenstates (normal modes). For this choice of wave function, taking all the modes
to have equal weight, we have DE ∼ M 2 so we look for a dependence of the form

t ∼ 3qMp. (2.1)

On the basis of equation (1.9), for example, we would expect p = −3 and q = −1.
To study this system (and potentially others, since it is designed to be easily

extendible), we have written a new computer code named ‘LOUIS’ (Towler 2010)
which uses pilot-wave dynamics to calculate particle trajectories. Given an initial
probability density and wave function, LOUIS is able to use these trajectories
to compute the probability density function and coarse-grained subquantum
H -function at later times. It is a ground-up reimplementation of the codes used
in Valentini & Westman (2005) and Colin & Struyve (2010) and is up to two
orders of magnitude faster with significantly more capabilities. Currently, it can
treat infinite potential square wells in one, two, or three dimensions using a finite
superposition of eigenstates to represent the wave function. The relative weights
and phases of the eigenstates may be specified in the input or chosen randomly
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(but reproducibly, using preset seeds). The scale of the coarse-graining may also
be set manually, outputting results for multiple coarse-graining lengths in a single
run of the program.

Since the results of interest involve calculation of the subquantum H -function,
which in turn involves a numerical integration over the area of the potential
well, the quantities in the integrand, r and |J|2, must be evaluated on a regular
lattice. In all calculations presented here, a 1024 × 1024 lattice is used covering a
square two-dimensional cell of length p. The ‘coarse-graining length’ 3 refers to
the number of lattice points along one side of a coarse-graining cell.

(a) Details of the algorithm

The LOUIS code uses de Broglie–Bohm trajectories to calculate how the particle
probability density evolves from a given initial density. At each of a sequence of
requested times, it evaluates the particle density and wave function at all points
on the fine-grained lattice, and then applies coarse-graining on the requested
scales. The coarse-grained H -function is calculated from these data at each time
step, and output files containing (t, H ) pairs and (t, ln H ) pairs are written to
disk. The program calculates a straight-line fit using linear regression of the t
versus ln H data; assuming exponential scaling, the gradient of this is the decay
constant or relaxation time t.

How do we calculate the density at a later time? We have seen that the ratio
r/|J|2 is preserved along trajectories, implying that the density at position x and
time t may be calculated from

r(x, t) = |J(x, t)|2
|J(x0, 0)|2 r(x0, 0), (2.2)

where the positions x0 and x are points on the same trajectory, at times 0 and
t, respectively. The value of |J|2 can be calculated analytically at all positions
and times, and r(x0, 0) is a known function; therefore, r(x, t) may be calculated
directly once we know the trajectory endpoint x. This is the crucial relation used
to calculate probability density functions from trajectories.

In fact, certain practicalities require real calculations to be performed in a
slightly different manner. The subquantum H -function is evaluated through
numerical integration over the two-dimensional box from a set of values of r
and |J|2 calculated at discrete points. Since accurate and efficient quadrature
algorithms in few dimensions generally require the points to be sampled uniformly
across the region, LOUIS starts with a uniform lattice at time t and exploits the
time-reversibility of the dynamics to calculate particle trajectories backwards in
time to t = 0. This ensures uniform sampling of r(x, t) at t when the quadrature
is to be performed. This has the unfortunate consequence that if r is required at
a later time t ′ > t this ‘backtracking’ has to be done all the way to t = 0 again:
the data calculated at time t cannot be used again.

The rate-limiting step of the LOUIS program is the numerical integration of
the de Broglie guidance equation v(x, t) = VS(x, t) (in atomic units) to compute
the particle trajectories x(t). One may use a variety of standard algorithms; an
excellent choice for these purposes is the Runge–Kutta–Fehlberg algorithm (Press
et al. 1992). Currently, the Schrödinger equation is not integrated numerically
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to compute the time development of the wave function; instead, only finite
superpositions of stationary states are used so the wave function can be evaluated
exactly for any t.

The velocity of the particle at any point may be computed from
Im(VJ(x, t)/J(x, t)) where the M -mode wave function is given by

J(x, t) = 2

p
√

M

√
M∑

m,n=1

sin(mx) sin(ny) exp i(qmn − Emnt). (2.3)

Here, Emn are the energy eigenvalues (1
2)(m

2 + n2), the qmn are the (randomly
chosen) initial phases, m, n = 1, 2, . . . ,

√
M are positive integers, and (for

convenience) M has an integer square root.
As with all such algorithms, the Runge–Kutta–Fehlberg algorithm basically

involves adding small increments to a function—here x(t)—where the increments
are given by derivatives ((dx/dt) = v = VS = Im (VJ/J)) multiplied by variable
step sizes (here, a time step Dt). In order to increase the accuracy, a tolerance is
set for the maximum error on each step (the step tolerance); if the error is greater
than this, then a smaller time step is used (subject to appropriate underflow
checks). When the integration has been performed along the entire trajectory
between the required initial and final times, the whole trajectory is recomputed
with the step tolerance decreased by a factor of 10. If the two final positions
agree within a certain tolerance (the trajectory tolerance), then the trajectory is
kept. If not, then the process is repeated with smaller and smaller step sizes until
the trajectories converge, or until the step tolerance reaches a certain minimum
value where the calculation will take too much time and the trajectory is flagged
as failed. Failed trajectories are not used in the subsequent computation of the
density. The proportion of failed trajectories rarely exceeds 1 in 1000 and their
contribution to the overall error is negligible. In general, they are trajectories that
come too close to a wave function node (where the velocity field diverges).

Computational cost is the main limiting factor. The calculation of relaxation
time scales is very computationally intensive, requiring many long, high-precision
numerical integrations. Since the particle wave function and its gradient must
be evaluated at each step in the integration of each trajectory, the complexity
of the wave function contributes significantly to the time taken to perform
the calculation; runs with larger numbers of modes in the superposition are
considerably more expensive. For example, a typical calculation on an elderly
cluster of 16 processors (17 evaluations of H̄ between time 0 and time 4p) took
9.6 CPU-hours with a nine-mode wave function. A comparable calculation with
36 modes took 542 CPU-hours. The calculations we report here are for 4, 9, 16,
25, 36, 49 and 64 modes. Previous calculations were done exclusively with either
four modes (Colin & Struyve 2010) or 16 modes (Valentini & Westman 2005).

3. Results and discussion

We begin by verifying that exponential decay is an appropriate model for the
evolution of H̄ under these conditions, as was assumed in the definition of
the relaxation time scale. Figure 4 shows plots of ln H̄ versus t for different
coarse-graining lengths 3, different numbers of modes M in the superposition,
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Figure 4. Graphs showing that the model of exponential decay is robust under the conditions
studied in this article. (a) Varying coarse-grained length, 3; (b) varying number of modes, N ; and
(c) varying initial phases. The horizontal axis in (b(i)) is scaled differently from that in the other
graphs, to better fit the range of data.

and different sets of initial phases qmn in the wave function (in order to obtain
reproducible results the phases are fixed by a single ‘preset’ parameter in the
LOUIS input file, which controls the seed for the random generation of a set of
phases). In all cases, we find a good straight-line fit to the data, validating the
assumption of exponential decay in H̄ over this range of conditions. This was not
unexpected as exponential decay was previously demonstrated by Valentini &
Westman (2005), though only for the case of M = 16 modes with a fixed
coarse-graining length.

(a) Relaxation time t as a function of the number of modes M

Figure 5 shows plots of ln t against ln M for various coarse-graining lengths
3, where now logarithmic axes are used in order to search for a power-law
relationship of the form t ∝ Mp. Error bars were calculated by running LOUIS
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Figure 5. Graphs showing ln t against ln M , for varying coarse-graining lengths. Logarithmic axes
have been used to identify a power-law relationship, t ∝ Mp. The error bars were estimated by
running LOUIS six times for each (3, M ) pair, using different initial phases. The values shown in the
graphs correspond to the mean of these six runs, and the error bars are one standard deviation.
The errors on the points for M = 4 cannot be properly represented on a logarithmic scale, as the
lower bound is less than zero. There is reason to believe (see §3) that these points may be excluded,
and with such a large error their weight in fitting would be very small; therefore, so figure 6 shows
the same results without these points.

six times for each (3, M ) pair with different initial phases qmn in each run; the
mean of these was taken to be the best estimate for the time scale with the
standard deviation taken to be the error bar.

In the case of four-mode simulations, the spread of values of t was so large
that the error bar Dt could not be displayed on a logarithmic plot (hence the
arrow at the base of the corresponding error bars in figure 5). Some representative
values of t were 980 ± 1600 for 3 = 4 and 100 ± 110 for 3 = 32. This large spread
in the time scale for low M can be understood by considering the role of wave
function nodes in the relaxation. The rapidly varying velocity field in the vicinity
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of nodes is believed to be a significant driving force for this process (Valentini &
Westman 2005), and so the initial positions of the nodes are likely to affect the
time scale (these initial positions are moved around when modifying the set of
initial phases qmn). The important point is that in larger superpositions with
larger M there are many nodes and the exact change in positions of nodes will
have less effect because the average distribution will be similar. With a small
superposition, perhaps containing only one node, the initial position of this node
will have a much larger effect on the subsequent relaxation, and so the six runs
with different initial phases will tend to produce very different results.

A full animation of the relaxation process can be seen in Towler et al. (2010).
The swirling vortices in the density surrounding the moving wave function nodes
are quite striking, and one can obtain more of a visual sense of why the presence
of nodes increases the chaotic nature of the trajectories.

In figure 6, therefore, we chose to plot the same data as in figure 5 but with
the points for M = 4 omitted, in an attempt to show the relationship between t
and M in the regime where the distribution of nodes may be considered roughly
fixed. Can we justify this? Arguably, points with such a large error will have little
effect on the curve fitting, as points are weighted according to the inverse of their
error. However, a better reason for neglecting the points for M = 4 is that the
theoretical predictions are actually in terms of DE , the uncertainty in the energy
of the wave function, rather than the number of modes, M , in the wave function.
The approximation used in this analysis is that DE ∼ M 2, which only applies for
larger M .

The best-fitting power law is shown on the graph in each case, and they are
also summarized in table 1. Clearly, these results do not support the theoretical
prediction (described as a ‘crude estimate’ in Valentini & Westman (2005)) that
the relaxation time should be proportional to M−3. Instead they very strongly
suggest a relationship of the form t ∝ M−1, to within the estimated error. This
suggests that some of the approximations made in obtaining the prediction in
equation (1.9) are invalid.

The relevant arguments used to obtain the apparently incorrect estimate of the
scaling are set out in Valentini (2001). They begin by defining a relaxation time
scale t in terms of the rate of decrease of H̄ near t = 0 via the following formula:

1
t2

≡ − 1

H̄ 0

(
d2H̄
dt2

)
0

. (3.1)

The second derivative is used rather than the first derivative since (dH̄ /dt)0 = 0
(as may be shown analytically (see Valentini 1992)). The H̄ -curve necessarily
has a local maximum at t = 0. This property might, at first sight, seem to be
incompatible with the observed exponential decay. But, in fact, it must be the case
that the exponential decay begins soon after t = 0, and that in the limit t → 0 the
decay is not exponential. The time scale of equation (3.1) then applies only to this
very short period immediately after t = 0. In other words, although equation (3.1)
may be a good estimate for the relaxation time scale in the limit t → 0, it cannot
accurately estimate the time constant in the exponential tail—where the bulk of
the relaxation takes place—and is therefore of little practical relevance. Another
potential conflict in the derivation of equation (1.9) is the requirement for a
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Figure 6. Graphs of t against M for all 3, excluding the points for M = 4. (a–e) The equation for
the best power-law fit (using the GNUplot implementation of the Marquardt–Levenberg nonlinear
least-squares fitting algorithm) is shown on each of the graphs; (f ) a comparison of the best fits
for all 3. It can be seen that for all 3 there is a roughly constant power law with index ≈ −1.

Table 1. Summary of results for a relationship between t and M , for various coarse-graining lengths.
The error is estimated from the straight line fit, which takes into account the errors on the points
used for the fit. The values are clearly not compatible with t ∝ M−3 as in equation (1.9), but are
compatible with t ∝ M−1, within error, supporting the relation in equation (3.2).

3 p

4 −1.06 ± 0.18
8 −1.09 ± 0.17

16 −1.09 ± 0.12
32 −1.08 ± 0.03
64 −1.05 ± 0.03
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Figure 7. Comparison of (a) the fine-grained |J|2 and (b) the coarse-grained approximation,
demonstrating that there may be significant variation over the length of coarse-graining cells.
(Online version in colour.)

coarse-graining length 3 so small that the velocity field varies little over the length
of a coarse-graining cell. The derivation works by considering the dependence of
t on 3 in the limit where 3 → 0, then applying dimensional analysis to find the
other dependencies. The inverse dependence of t (as defined by equation (3.1))
on 3 must hold in this limit, since we have an analytic proof of it. However,
unfortunately, the limit seems too restrictive to be of practical use. In the cases
studied here the wave function apparently varies rapidly enough on that scale—
particularly with larger numbers of modes in the superposition—to ensure that we
are not working in this limit at all. For example, figure 7 demonstrates the effect
of coarse-graining (3 = 32) on one of our 64-mode wave functions. This shows the
magnitude of J, rather than the velocity field, but the length scale over which the
latter varies should be even smaller than the length scale over which the former
varies. We may thus conclude that the velocity field is likely to vary significantly
over the length of one coarse-graining cell, at least under some of the conditions
studied here. Taking all these facts into consideration, it is not surprising that the
results do not confirm equation (1.9), the domain of validity of which is probably
simply too narrow to be of practical use. We now provide a theoretical justification
for the observed relation t ∝ M−1. Let qr , r = 1, 2, denote x or y. We shall proceed
by considering an upper bound on the (equilibrium) mean displacement dqr of
particles over an arbitrary time interval [ti , tf ]. A relaxation time may then be
defined, in the case of the infinite potential square well, by the condition that
relaxation will occur over time scales t such that the said upper bound becomes of
the order of the width L of the potential well. As we shall now show, the time scale
will then be

t ∼ L
√

m

2Ē
, (3.2)

where Ē is the mean energy, and Ē ∝ M 2.
There now follows a derivation of the upper bound on the mean displacement

dqr . The derivation is based on Valentini (2008), but with some differences that
are highlighted below.
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First, note that the final displacement dqr(tf ) has modulus

|dqr(tf )| ≤
∫ tf

ti
dt|q̇r(t)|, (3.3)

where q̇r is the component of the de Broglie–Bohm velocity in the qr direction.
The equilibrium mean 〈|dqr(tf )|〉eq then satisfies

〈|dqr(tf )|〉eq ≤
〈∫ tf

ti
dt|q̇r(t)|

〉
eq

=
∫ tf

ti
dt〈|q̇r(t)|〉eq. (3.4)

The equilibrium mean speed, 〈|q̇r(t)|〉eq, is

〈|q̇r(t)|〉eq =
∫∫

dx dy|J(x , y, t)|2|q̇r(x , y, t)|. (3.5)

Using the fact that, for any x , 〈x〉 ≤ √〈x2〉, we have

〈|dqr(tf )|〉eq ≤
∫ tf

ti
dt

√
〈|q̇r(t)|2〉eq. (3.6)

Now note that, starting from the guidance equation,

m2〈|q̇r |2〉eq =
〈(

vS
vqr

)2
〉

eq

=
∫∫

dx dy|J(x , y, t)|2
(

vS(x , y, t)
vqr

)2

= 〈p̂2
r 〉 −

∫∫
dx dy

(
v|J(x , y, t)|

vqr

)2

, (3.7)

where p̂r is the momentum operator conjugate to qr , and 〈p̂r 〉 denotes the usual
quantum expectation value for the operator p̂r . The last equality follows from
the relations

〈p̂2
r 〉 =

∫∫
dx dyJ∗

(
− v2

vq2
r

)
J

=
∫∫

dx dy
vJ∗

vqr

vJ

vqr
(3.8)

and
vJ∗

vqr

vJ

vqr
=

(
v|J|
vqr

)2

+ |J|2
(

vS
vqr

)2

. (3.9)

Since (v|J|/vqr)2 ≥ 0, we then have

m2〈|q̇r |2〉eq ≤ 〈p̂2
r 〉 (3.10)

and so

〈|dqr(tf )|〉eq ≤ 1
m

∫ tf

ti
dt

√
〈p̂2

r 〉. (3.11)
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We also have

〈p̂2
r 〉 < 2mWr , (3.12)

where Wr denotes the x- or y-part of the mean Hamiltonian, with Wr ∝ M 2.
Hence,

〈|dqr(tf )|〉eq <

∫ tf

ti
dt

1
m

√
2mWr . (3.13)

Since Wr is time independent, and setting ti = 0 and tf = t, we have

〈|dqr(t)|〉eq < t

√
2Wr

m
. (3.14)

Setting the right-hand side to be of order L, and noting that Ē ≈ Wr , this indeed
yields the relaxation time in equation (3.2), the inverse scaling with M of which
is in agreement with the numerical results presented above.

As mentioned, this derivation is based on that in Valentini (2008) but differs in
some respects. The purpose of the analysis in Valentini (2008) was to derive
a condition for the suppression of relaxation in expanding space (here we are
only concerned with static space) and the condition for relaxation was that
the mean displacement dqr—for field degrees of freedom in Fourier space—should
be comparable to (or greater than) the quantum spread Dqr . In the analysis above,
the only degree of freedom considered is the spatial displacement of a particle
in the potential well, the constraints of which slightly change the condition for
relaxation. Regardless of the spread in the wave function the particle cannot
move beyond the confines of the well, so the condition used for relaxation is that
the mean displacement of a particle is comparable to (or greater than) the size
of the potential well.

(b) Relaxation time as a function of coarse-graining length

In figure 8, the relaxation time t is plotted against coarse-graining length 3 for
various M , again with logarithmic axes and with the data for M = 4 excluded
for the same reason as before. The best-fit power law is shown on the graphs,
and the results are summarized in table 2. It is evident from these data that,
although the relaxation time evidently decreases with increasing 3, the data do
not support equation (1.9) nor are they particularly suggestive of a constant power
law. A weak dependence of order t ∼ 3− 1

4 is observed. Equation (1.9) predicts a
power-law relation t ∝ 3−1 while equation (3.2) predicts no dependence.

As was the case with the M -dependence of t, the dependence on 3 is not
in fact expected to take the form in equation (1.9), for two reasons. First, the
derivation of equation (1.9) is based on a definition of ‘relaxation time’ that
applies only when t → 0; it does not apply to the exponential tail of H̄ , where
most of the relaxation takes place. Second, the velocity field can vary significantly
over a coarse-graining cell, contrary to the assumption made in the derivation of
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Figure 8. Graphs showing ln t against ln 3. As in figures 5 and 6, a logarithmic axis has been used,
so as to identify a power-law relationship. Also, as in figure 6, the data points with M = 4 are
excluded. The errors are estimated in the same way as those in figure 6. It is clear that the power
law does not conform to equation (1.9), t ∝ 3−1, nor does there seem to be a consistent power law.
The straight line fit is not as convincing in this case as in the t versus M graphs, except for the
case of M = 9.

Table 2. Summary of results for a relationship between t and 3 for various numbers of modes,
shown graphically in figure 8. The errors are estimated in the same way as the results in table 1.
These values are not compatible with equation (1.9), t ∝ 3−1, nor do they appear to be compatible
with a consistent power law.

M q

9 −0.31 ± 0.02
16 −0.24 ± 0.03
25 −0.29 ± 0.03
36 −0.37 ± 0.06
49 −0.20 ± 0.03
64 −0.20 ± 0.03
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equation (1.9). Indeed the graphs in figure 8 appear to show a systematic concave
character rather than a straight line, apparently suggesting a small systematic
deviation from a power-law model. The concave curvature is at least consistent
with a power law t ∝ 3−1 in the limit 3 → 0 (which must hold as we have noted),
since at some point to the left of the data in any of the graphs the gradient
ought to approach (or pass through) −1. A systematic study at smaller coarse-
graining lengths would however be rather difficult in terms of CPU time because
of the need for a significantly finer lattice and much greater overall number of
lattice points.

The lack of a dependence on 3 in equation (3.2) is not surprising since the
analysis in §3a and Valentini (2008) uses a different definition of the time scale.
This definition does not consider the H̄ -function nor is there any necessity to
even mention coarse-graining. The weak dependence observed in the numerical
simulations should be interpreted as an effect outside the scope of this prediction
rather than one in conflict with it.

4. Conclusions

The numerical simulations performed in this work demonstrate clearly and
unequivocally the tendency for Born rule distributions to arise spontaneously as
a consequence of ordinary pilot-wave dynamics, even for a system as simple as the
electron in a two-dimensional potential well. Contrary to popular belief, therefore,
the Born rule does not have to be introduced as a postulate of non-relativistic
quantum mechanics. What is the price paid for this? We must suppose merely
that particles have well-defined positions (and hence trajectories) continuously
rather than only when a position measurement is performed.

The main technical result of this work is the emergence of the relationship
t ∝ M−1 showing the dependence of the relaxation time on the number of modes
in a superposition. This result seems fairly robust under the conditions studied
here. In general terms, the faster relaxation times for larger M are due to the
greater number of free-moving nodes in the pilot wave which act as a source of
vorticity and increase the chaotic nature of trajectories. Our numerical result for
the scaling conflicts with the previous theoretical prediction, equation (1.9), but
agrees with an alternative theoretical analysis presented here in §1b. As we have
discussed, the assumptions made in deriving equation (1.9) were probably too
restrictive for it to be of practical use. In particular, the defined time scale is
relevant only close to t = 0, and does not apply to the exponential tail of the H̄
function, where most of the relaxation takes place.

Our simulations reveal no well-defined scaling for the relaxation time as a
function of coarse-graining length t(3), other than a possible weak dependence
of the order of t ∼ 3− 1

4 . This also differs from equation (1.9) and this is probably
simply because the coarse-graining cells are too large for the derivation of
equation (1.9) to be valid. It is possible that by decreasing 3 a behaviour
conforming better to equation (1.9) (t ∝ 3−1) could be observed, and it would
be interesting to see at what length scale this begins to emerge.

Physically speaking our results suggest very short relaxation times with
a range of values observed for t between approximately 1 and 1000. Using
natural units c = h̄ = 1 and an electron with mass m = me = 1 this corresponds to
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relaxation times of the order of 10−21–10−18 s. This is consistent with our current
understanding of quantum mechanics and modern experimental investigations in
which no deviation from quantum equilibrium is observed. If the initial state of
the Universe corresponded to a non-equilibrium state, one might then assume
that almost all deviations from the Born rule will have been quickly washed out.
However, it may be (see Valentini (2008, 2010) and works cited therein) that relic
non-equilibrium from the early Universe could be observed today, either directly
or by its imprint on the CMB. In the future, we intend to modify the LOUIS
program to deal with more realistic wave functions, multi-particle systems, and
expanding spaces with the intention of improving some of the predictions outlined
in Valentini (2008, 2010). More precise predictions for the effect on the CMB of
non-equilibrium in the early Universe could lead to experimental tests of the de
Broglie–Bohm formulation of quantum mechanics.

How might these results generalize to more complex systems? In the
original version of the subquantum H -theorem (Valentini 1991a,b), relaxation
was considered for a theoretical ensemble of complex N -body systems. Once
equilibrium is reached for such an ensemble, it can be (and was) shown
that extracting a single particle from each system resulted in single-particle
subensembles that obey the Born rule. The original view expressed in Valentini
(1991a,b) was that, realistically, relaxation would take place efficiently only for
many-body systems, and that the Born rule for single particles would be derived
by considering how these are extracted from more complex systems. But, in fact,
in practice there is an efficient relaxation even in simple two-dimensional one-
electron systems, and there appears to be no need to appeal to a complex N -body
‘parent system’.

Note that in a strict account of our world, say in the early Universe, it could
be that all degrees of freedom are entangled, so that there is no actual ensemble
of independent subsystems with the same wave function. However, one can still
talk about a theoretical ensemble of universes, each with the same universal wave
function, and consider the evolution of its distribution. (One could also consider a
mixed ensemble of universes, and apply our discussion to each pure subensemble.)

It is sometimes suggested that it is problematic to consider probabilities for
the ‘whole universe’. And, yet, cosmologists are currently testing primordial
probabilities experimentally by measuring temperature anisotropies in the CMB.
By making statistical assumptions about a theoretical ‘ensemble of universes’,
cosmologists are able to test probabilities in the early Universe, such as those
predicted by quantum field theory for vacuum fluctuations during inflation. (For
a detailed discussion of this in a de Broglie–Bohm context, see Valentini (2010).)
One can question what the ensemble of universes refers to. Is it a subjective
probability distribution? Or, is the universe we see in fact a member of a huge and
perhaps infinite ensemble, as is the case in theories of eternal inflation? Those are
interesting questions, but only tangentially related to the ongoing experimental
tests. It is also important to bear in mind that there is much that is not known
about cosmology, so the treatment should be kept independent of cosmological
details as far as possible. What we do know is that all the particles we see today
are, or were, in complex superpositions (whether entangled with other particles
or not), and it appears clear from the simulations that such superposition yields
rapid relaxation—if it is rapid in two dimensions, one would expect it to be even
more rapid for 3N dimensions.
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