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1. Introduction

The variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods are

stochastic approaches for evaluating quantum mechanical expectation values with many-

body Hamiltonians and wave functions [1]. VMC and DMC methods are used for both

continuum and lattice systems, but here we describe their application only to continuum

systems. The main attraction of these methods is that the computational cost scales

as some reasonable power (normally from the second to fourth power) of the number of

particles [2]. This scaling makes it possible to deal with hundreds or even thousands of

particles, allowing applications to condensed matter.

Continuum quantum Monte Carlo (QMC) methods, such as VMC and DMC,

occupy a special place in the hierarchy of computational approaches for modelling

materials. QMC computations are expensive, which limits their applicability at present,

but they are the most accurate methods known for computing the energies of large

assemblies of interacting quantum particles. There are many problems for which the

high accuracy achievable with QMC is necessary to give a faithful description of the

underlying science. Most of our work is concerned with correlated electron systems, but

these methods can be applied to any combination of fermion and boson particles with

any inter-particle potentials and external fields etc. Being based on many-body wave

functions, these are zero-temperature methods, and for finite temperatures one must

use other approaches such as those based on density matrices.

Both the VMC and DMC methods are variational, so that the calculated energy

is above the true ground state energy. The computational costs of VMC and DMC

calculations scale similarly with the number of particles studied, but the prefactor is

larger for the more accurate DMC method. QMC algorithms are intrinsically parallel

and are ideal candidates for taking advantage of the petascale computers (1015 flops)

which are becoming available now and the exascale computers (1018 flops) which will be

available one day.

DMC has been applied to a wide variety of continuum systems. A partial list

of topics investigated within DMC and some references to milestone papers are given

below.

• Three-dimensional electron gas [3, 4, 5].

• Two-dimensional electron gas [6, 7, 8].

• The equation of state and other properties of liquid 3He [9, 10].

• Structure of nuclei [11].

• Pairing in ultra-cold atomic gases [12, 13, 14].

• Reconstruction of a crystalline surface [15] and molecules on surfaces [16, 17].

• Quantum dots [18].

• Band structures of insulators [19, 20, 21].

• Transition metal oxide chemistry [22, 23, 24].
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• Optical band gaps of nanocrystals [25, 26].

• Defects in semiconductors [27, 28, 29].

• Solid state structural phase transitions [30].

• Equations of state of solids [31, 32, 33, 34].

• Binding of molecules and their excitation energies [35, 36, 37, 38, 39].

• Studies of exchange-correlation [40, 41, 42, 43].

The same basic QMC algorithm can be used for each of the applications mentioned

above with only minor modifications. The complexity and sophistication of the computer

codes arises not from the algorithm itself, which is in fact quite simple, but from the

diversity of the Hamiltonians and many-body wave functions which are involved. A

number of computer codes are currently available for performing continuum QMC

calculations of the type described here [44]. We have developed the casino code

[45], which can deal with systems of different dimensionalities, various interactions

including the Coulomb potential, external fields, mixtures of particles of different types

and different types of many-body wave function.

The VMC and DMC methods are described in section 2, and the types of many-

body wave function we use are described in 3. The optimisation of parameters in wave

functions using stochastic methods, which are unique to the field, is described in section

4. QMC calculations within periodic boundary conditions are described in section 5, the

use of pseudopotentials in QMC calculations is discussed in section 6, and excited-state

DMC calculations are briefly described in section 7. Sources of bias in the DMC method

and practical methods for handling errors in QMC results are described in section 8. In

section 9 we describe how to evaluate other expectation values apart from the energy.

Section 10 deals with the calculation of energy differences and energy derivatives in the

VMC and DMC methods, and we make our final remarks in section 11.

2. Quantum Monte Carlo methods

The VMC method is conceptually very simple. The energy is calculated as the

expectation value of the Hamiltonian with an approximate many-body trial wave

function. In the more sophisticated DMC method the estimate of the ground state

energy is improved by performing a process described by the evolution of the wave

function in imaginary time. Throughout this article we will consider only systems with

spin-independent Hamiltonians and collinear spins. We will also restrict the discussion

to systems with time-reversal symmetry, for which the wave function may be chosen

to be real. It is, however, straightforward to generalise the VMC algorithm to work

with complex wave functions, and only a little more complicated to generalise the DMC

algorithm to work with them [46].
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2.1. The VMC method

The variational theorem of quantum mechanics states that, for a proper trial wave

function ΨT, the variational energy,

EV =

∫
ΨT(R)ĤΨT(R) dR∫

Ψ2
T(R) dR

, (1)

is an upper bound on the exact ground state energy E0, i.e., EV ≥ E0. In equation (1),

Ĥ is the many-body Hamiltonian and R denotes a 3N -dimensional vector of particle

coordinates. As discussed in section 3.1, the spin variables in equation (1) are implicitly

summed over.

To facilitate the stochastic evaluation, EV is written as

EV =
∫
p(R)EL(R) dR , (2)

where the probability distribution p is

p(R) =
Ψ2

T(R)∫
Ψ2

T(R′) dR′ , (3)

and the local energy,

EL(R) = Ψ−1
T ĤΨT , (4)

is straightforward to evaluate at any R.

In VMC the Metropolis algorithm [47] is used to sample the probability distribution

p(R). Let the electron configuration at a particular step be R′. A new configuration

R is drawn from the probability density T (R ← R′), and the move is accepted with

probability

A(R← R′) = min

{
1,
T (R′ ← R)Ψ2

T(R)

T (R← R′)Ψ2
T(R′)

}
. (5)

It can easily be verified that this algorithm satisfies the detailed balance condition

Ψ2
T(R)T (R′ ← R)A(R′ ← R) = Ψ2

T(R′)T (R← R′)A(R← R′). (6)

Hence p(R) is the equilibrium configuration distribution of this Markov process and,

so long as the transition probability is ergodic (i.e., it is possible to reach any point

in configuration space in a finite number of moves), it can be shown that the process

will converge to this equilibrium distribution. Once equilibrium has been reached, the

configurations are distributed as p(R), but successive configurations along the random

walk are in general correlated.

The variational energy is estimated as

EV '
1

M

M∑
i=1

EL(Ri), (7)

where M configurations Ri have been generated after equilibration. The serial

correlation of the configurations and therefore local energies EL(Ri) complicates the

calculation of the statistical error on the energy estimate: see section 8.2. Other

expectation values may be evaluated in a similar manner to the energy.
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Equation (2) is an importance sampling transformation of equation (1). Equation

(2) exhibits the zero variance property: as the trial wave function approaches an exact

eigenfunction (ΨT → φi), the local energy approaches the corresponding eigenenergy,

Ei, everywhere in configuration space. As ΨT is improved, EL becomes a smoother

function of R and the number of sampling points, M , required to achieve an accurate

estimate of EV is reduced.

VMC is a simple and elegant method. There are no restrictions on the form of trial

wave function which can be used and it does not suffer from a fermion sign problem.

However, even if the underlying physics is well understood it is often difficult to prepare

trial wave functions of equivalent accuracy for two different systems, and therefore the

VMC estimate of the energy difference between them will be biased. We use the VMC

method mostly to optimise parameters in trial wave functions (see section 4) and our

main calculations are performed with the more sophisticated DMC method, which is

described in the next section.

2.2. The DMC method

In DMC the operator exp(−tĤ) is used to project out the ground state from an initial

state. This can be viewed as solving the imaginary-time Schrödinger equation, which

for electrons is

− ∂

∂t
Φ(R, t) =

(
Ĥ − ET

)
Φ(R, t) =

(
−1

2
∇2

R + V (R)− ET

)
Φ(R, t) , (8)

where t is a real variable measuring the progress in imaginary time, V is the potential

energy (assumed to be local for the time being), and ET is an arbitrary energy offset

known as the reference energy. Throughout this article we use Hartree atomic units

where me = h̄ = |e| = 4πε0 = 1, where me is the mass of the electron and e is its charge.

Equation (8) can be solved formally by expanding Φ(R, t) in the eigenstates φi of the

Hamiltonian, which leads to

Φ(R, t) =
∑

i

exp[−(Ei − ET)t] ciφi(R) . (9)

For long times one finds

Φ(R, t→∞) ' exp[−(E0 − ET)t] c0φ0(R) , (10)

which is proportional to the ground state wave function, φ0.

The Hamiltonian is the sum of kinetic and potential terms: Ĥ = −(1/2)∇2
R+V (R).

Suppose for a moment that we can interpret the initial state,
∑

i ciφi, as a probability

distribution. If we neglect the potential term then the imaginary-time Schrödinger

equation (8) reduces to a diffusion equation in the configuration space. If, on the other

hand, we neglect the kinetic term, (8) reduces to a rate equation. It should not be

surprising that a short time slice of the imaginary-time evolution can be simulated by

taking a population of configurations and subjecting them to random hops to simulate

the diffusion process, and “birth” and “death” of configurations to simulate the rate
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process. By “birth” and “death” we mean replicating some configurations and deleting

others at the appropriate rates, a process which is often referred to as “branching”.

Unfortunately the wave function cannot in general be interpreted as a probability

distribution. A wave function for two or more identical fermions must have positive and

negative regions, as should an excited state of any system. One can construct algorithms

which are formally exact using two distributions of configurations with positive and

negative weights [48], but they are inefficient and the scaling of the computational cost

with system size is unclear.

The fixed-node approximation [49, 50] provides a way to evade the sign problem.

This approximation is equivalent to placing an infinite repulsive potential barrier on the

nodal surface of the trial wave function which is sufficiently strong to force the wave

function to be zero on the nodal surface. (The nodal surface is the 3N − 1 dimensional

surface on which the wave function is zero and across which it changes sign.) In effect

we solve the Schrödinger equation exactly within each volume enclosed by the nodal

surface, subject to the boundary condition that the wave function is zero on the nodal

surface. The infinite repulsive potential barrier has no effect if the trial nodal surface is

placed correctly but, if it is not, the energy is always raised. It follows that the DMC

energy is always less than or equal to the VMC energy with the same trial wave function,

and always greater than or equal to the exact ground-state energy.

The fixed-node DMC algorithm described above is extremely inefficient and a

vastly superior algorithm can be obtained by introducing an importance sampling

transformation [51, 52]. Consider the mixed distribution,

f(R, t) = ΨT(R)Φ(R, t) , (11)

which has the same sign everywhere if and only if the nodal surface of Φ(R, t) equals

that of ΨT(R). Substituting in equation (8) for Φ we obtain

−∂f
∂t

= −1

2
∇2

Rf +∇R · [vf ] + [EL − ET]f , (12)

where the 3N -dimensional drift velocity is defined as

v(R) = Ψ−1
T (R)∇RΨT(R) . (13)

The three terms on the right-hand side of equation (12) correspond to diffusion, drift,

and branching processes, respectively. The importance sampling transformation has

several consequences. First, the density of configurations is increased where |ΨT| is

large, so that the more important parts of the wave function are sampled more often.

Second, the rate of branching is now controlled by the local energy which is normally

a much smoother function than the potential energy. This is particularly important for

the Coulomb interaction, which diverges when particles are coincident. The importance

sampling transformation, together with an algorithm that imposes f(R, t) ≥ 0, ensures

that ΨT and Φ(R, t) have the same nodal surfaces, as can be seen in equation (11).

The importance sampling transformation also reduces the statistical error bar on the

estimate of the energy and leads to a zero variance property analogous to that in VMC.



Continuum variational and diffusion quantum Monte Carlo calculations 7

The importance-sampled imaginary-time Schrödinger equation may be written in

integral form:

f(R, t) =
∫
G(R← R′, t− t′)f(R′, t′) dR′ , (14)

where the Green’s function G(R ← R′, t − t′) is a solution of equation (12) satisfying

the initial condition G(R ← R′, 0) = δ(R − R′). The exact Green’s function can be

sampled using the Green’s function Monte Carlo (GFMC) algorithm developed by Kalos

and coworkers [53, 54, 52, 55, 56].

Let us interpret f(R, t) as the probability distribution of a discrete population of

P configurations with positive weights:

f(R, t) ≈
P∑

p=1

wp(t) δ[R−Rp(t)] , (15)

where the pth configuration at time t has position Rp(t) in configuration space and

weight wp(t), and the “approximately equal” sign implies that this representation of

f(R, t) is formally correct from a coarse-grained perspective, or if one performs an

ensemble average of the right-hand side of equation (15). Using equation (14), the

evolution of f(R, t) to time t+ τ yields

f(R, t+ τ) ≈
P∑

p=1

wp(t)G[R← Rp(t), τ ]

≈
P∑

p=1

wp(t+ τ) δ[R−Rp(t+ τ)] . (16)

The dynamics of the configurations and their weights is governed by the Green’s

function.

The GFMC algorithm is computationally expensive, but considerably faster

calculations can be made using an approximate Green’s function which becomes exact

in the limit of infinitely small time steps. Within the short-time approximation

G(R← R′, τ) ' Gst(R← R′, τ) = GD(R← R′, τ)GB(R← R′, τ) , (17)

where

GD(R← R′, τ) =
1

(2πτ)3N/2
exp

(
− [R−R′ − τv(R)]2

2τ

)
(18)

is the drift-diffusion Green’s function and

GB(R← R′, τ) = exp
(
−τ

2
[EL(R) + EL(R′)− 2ET]

)
(19)

is the branching factor.

The process described by GD(R← R′, τ) is simulated by making each configuration

R′ in the population drift through a distance τv(R′), then diffuse by a random distance

drawn from a Gaussian distribution of variance τ . Each configuration is then copied

or deleted in such a fashion that, on average, GB(R ← R′, τ) configurations continue

from the new position R. When using the short time approximation, configurations

occasionally attempt to cross the nodal surface but such moves may simply be rejected.
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The short time approximation leads to a dependence of DMC results on the time step.

It is important to investigate the size of the time step dependence, and it is common

practice to extrapolate the energy to zero time step: see figure 5. It turns out that

Gst does not precisely satisfy the detailed-balance condition, but it is standard practice

to reinstate detailed balance by incorporating an accept-reject step. The importance-

sampled fixed-node fermion DMC algorithm was first used by Ceperley and Alder in

their ground-breaking study of the homogeneous electron gas (HEG) [3].

It can be seen that the reference energy ET appears in the branching factor of

equation (19). By adjusting the reference energy during the simulation we may keep the

total population close to a target value, preventing the population from either increasing

exponentially or dying out. An example of the behaviour of the total population and

the reference energy can be seen in figure 1.

Another important aspect of practical implementations is that the particles are

normally moved one at a time in both the VMC and DMC algorithms. For any given

timestep, the probability of accepting single-particle moves is much larger than that of

accepting an entire configuration move, resulting in shorter correlation times of the

set of local energies, and the efficiency of configuration-space sampling is therefore

considerably improved [57].

The initial configurations are normally taken from a VMC calculation and

equilibrated within DMC for a period of imaginary time. The importance-sampled DMC

algorithm generates configurations asymptotically distributed according to f(R) =

ΨT(R)φ0(R), where φ0 is the ground state of the Schrödinger equation subject to the

fixed-node boundary condition. Noting that Ĥφ0 = E0φ0 everywhere (except on the

nodal surface where φ0 = 0) the fixed-node DMC energy can be written as

ED ≡ E0 =
〈φ0|Ĥ|ΨT〉
〈φ0|ΨT〉

=

∫
f(R)EL(R) dR∫

f(R) dR
(20)

which can be evaluated as a weighted average of the set of local energies sampled in the

calculation.

Some example DMC data are shown in figure 1.

3. Trial wave functions

Trial wave functions are of central importance in VMC and DMC calculations because

they introduce importance sampling and control both the statistical efficiency and

accuracy obtained. The accuracy of a DMC calculation depends on the nodal surface of

the trial wave function via the fixed-node approximation, while in VMC the accuracy

depends on the entire trial wave function. VMC energies are therefore more sensitive

to the quality of the trial wave function than DMC energies.
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Figure 1. DMC data for a silane (SiH4) molecule, with the ions represented by
pseudopotentials. The upper panel shows the fluctuations in the population of
configurations arising from the branching process used to simulate equation (19). The
reference energy, ET, is altered during the run to return the population towards a target
value of 12800. The total energy is shown in the lower panel as a function of the move
number. The black line shows the instantaneous value of the local energy averaged
over the current population of configurations, the red line is the reference energy ET,
and the green line is the best estimate of the DMC energy as the simulation progresses.
The configurations at move number zero are from the output of a VMC simulation,
and the energy decays rapidly from its initial VMC value of about −6.250 a.u. and
reaches a plateau with a DMC energy of about −6.305 a.u. The data up to move 1000
are deemed to form the equilibration phase, and are discarded.

3.1. Slater-Jastrow wave functions

QMC calculations require a compact trial wave function which can be evaluated rapidly.

Most studies of electronic systems have used the Slater-Jastrow form, in which a pair

of up- and down-spin determinants is multiplied by a Jastrow correlation factor,

ΨSJ(R)= eJ(R) det
[
ψn(r↑i )

]
det

[
ψn(r↓j)

]
, (21)

where eJ is the Jastrow factor and det
[
ψn(r↑i )

]
is a determinant of single-particle orbitals

for the up-spin electrons. The quality of the single-particle orbitals is very important,
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and they are often obtained from density functional theory (DFT) or Hartree-Fock (HF)

calculations. Note that the spin variables themselves do not appear in equation (21).

Formally the sum over spin variables in the expectation values in equations (1) and (20)

has already been performed and the single determinant with spin variables is replaced

by two determinants of up- and down-spin orbitals whose arguments are the up- and

down-spin electron coordinates R↑ and R↓, respectively. This is explained in more detail

in reference [1].

The Jastrow factor is taken to be symmetric under the interchange of identical

particles and its positivity means that it does not alter the nodal surface of the trial

wave function. The Jastrow factor introduces correlation by making the wave function

depend explicitly on the particle separations. The optimal Jastrow factor is normally

small when particles with repulsive interactions (for example, two electrons) are close

to one another and large when particles with attractive interactions (for example, an

electron and a positron) are close to one another.

The Jastrow factor can also be used to ensure that the trial wave function obeys the

Kato cusp conditions [58], which leads to smoother behaviour in the local energy EL(R).

When two particles interacting via the Coulomb potential approach one another, the

potential energy diverges, and therefore the exact wave function Ψ must have a cusp so

that the local kinetic energy −(1/2)Ψ−1∇2Ψ supplies an equal and opposite divergence.

It seems very reasonable to enforce the cusp conditions on trial wave functions because

they are obeyed by the exact wave function. Imposition of the cusp conditions is in fact

very important in both VMC and DMC calculations because divergences in the local

energy lead to poor statistical behaviour and even instabilities in DMC calculations due

to divergences in the branching factor.

Figure 2 shows the local energies generated during two VMC runs for a silane

molecule in which the Si4+ and H+ ions are described by smooth pseudopotentials. In

figure 2(a) the trial wave function consists of a product of up- and down-spin Slater

determinants of molecular orbitals. The Kato cusp conditions for electron-electron

coalescences are therefore not satisfied and the local energy shows very large positive

spikes when two electrons are close together. Figure 2(b) shows the effect of adding a

Jastrow factor which satisfies the electron-electron cusp conditions. The large positive

spikes in the local energy are removed and the mean energy is lowered. Some small spikes

remain, and the frequency and size of the positive and negative spikes are roughly equal.

These spikes arise from electrons approaching the nodes of the trial wave function, where

the local kinetic energy diverges positively on one side of the node and negatively on

the other side.

The basic Jastrow factor that we use for systems of electrons and ions contains

the sum of homogeneous, isotropic electron-electron terms u, isotropic electron-nucleus

terms χ centred on the nuclei, and isotropic electron-electron-nucleus terms f , also

centred on the nuclei [59]. We use a Jastrow factor of the form exp[J(R)], where

J({ri}, {rI}) =
N∑

i>j

u(rij) +
Nions∑
I=1

N∑
i=1

χI(riI) +
Nions∑
I=1

N∑
i>j

fI(riI , rjI , rij) , (22)
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Figure 2. Local energy of a silane (SiH4) molecule from a VMC calculation (a) using
a Slater-determinant trial wave function and (b) including a Jastrow factor.

N is the number of electrons, Nions is the number of ions, rij = ri−rj, riI = ri−rI , ri is

the position of electron i and rI is the position of nucleus I. The functions u, χ, and f

are represented by power expansions with optimisable coefficients. Different coefficients

are used for terms involving different spins.

When using periodic boundary conditions, we often add a plane-wave term in the

electron-electron separations, p(rij), which describes similar sorts of correlation to the

u term. The u(rij) term, however, is cut off at a distance less than or equal to the

Wigner-Seitz radius of the simulation cell, and the p term adds variational freedom

in the corners of the simulation cell. Occasionally we add a plane-wave expansion in

electron position, q(ri), and also occasionally add three-body electron-electron-electron

terms.

We have recently developed a more general form of Jastrow factor [60] which allows

the inclusion of higher order terms than those of equation (22), such as terms involving

the distances between four or more particles. An example of the application of such a

Jastrow factor to the H2 molecule is shown in figure 3. The molecular orbital was

calculated within Hartree-Fock theory and VMC calculations were performed using

Jastrow factors of increasing complexity. The Jastrow factor of equation (22) includes

electron-nucleus (e-N etc.), e-e and e-e-N terms, but the additional reductions in energy

from including the e-N-N and e-e-N-N terms are clearly visible in figure 3.
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Figure 3. The difference between the VMC energy and the exact ground state energy
against the variance of the VMC local energies on logarithmic scales for H2 at a bond
length of 1.397453 a.u. obtained using Jastrow factors of increasing complexity. “HF”
indicates a wave function consisting of a molecular orbital obtained from a Hartree-
Fock calculation and “e-e-N” denotes a term in the Jastrow factor involving the three
distances between two electrons and one proton, etc.

3.2. Pairing wave functions

Slater-Jastrow wave functions are not appropriate for all systems. For example,

the strongly attractive interaction between electrons and holes within an effective-

mass theory leads to the formation of excitons, which are not well described by a

Slater-Jastrow wave function. A more appropriate wave function is formed from the

antisymmetrised product of identical electron-hole pairing functions ψ, multiplied by a

Jastrow factor,

ΨSP(R) = eJ(R) det
[
ψ(r↑i , r

↓
j)
]
. (23)

It is also possible to include additional orbitals for unpaired particles within this wave

function.

3.3. Multi-determinant wave functions

Multi-determinant expansions have been used with considerable success over many

decades within the quantum chemistry community. The trial wave function can be
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written as

ΨMD(R)= eJ(R)
∑
n

cn det
[
ψn(r↑i )

]
det

[
ψn(r↓j)

]
, (24)

where the cn are coefficients. This method provides a systematic approach to improving

the trial wave function, and there have been numerous applications of multi-determinant

trial wave functions in QMC calculations for small molecules. Such trial wave

functions can capture near-degeneracy effects (also known as static correlation). Multi-

determinant wave functions are not in general suitable for large systems because the

number of determinants required to retrieve a given fraction of the correlation energy

increases exponentially with system size. An exception to this occurs if only a small

region of the system requires a multi-determinant description. An example of a DMC

calculation of this type is the study of the electronic states formed by the strongly

interacting dangling bonds at a neutral vacancy in diamond by Hood et al. [28].

3.4. Backflow wave functions

Additional correlation effects can be incorporated in the trial wave function using

backflow transformations [61, 62]. Consider a solid ball falling through a classical liquid.

The incompressible liquid is pushed out of the way and it fills in behind the ball to form

a characteristic flow pattern. One can imagine that similar correlations occur as a

quantum particle moves through a quantum fluid, as shown in figure 4. Much of this

correlation can be captured in a Jastrow factor which, however, preserves the nodal

surface of the wave function. The backflow motion gives an additional contribution

which leaves its imprint on the nodes. Quantum backflow was discussed by Feynman

and coworkers [61, 62] for excitations in 4He and the effective mass of a 3He impurity

in liquid 4He. Backflow wave functions have been used successfully in QMC studies

of liquid He [9, 10], the electron gas [63, 64, 4], hydrogen systems [32], and various

inhomogeneous systems [57, 65, 66].

The backflow wave functions we use [57] can be written as

ΨBF(R) = eJ(R) det
[
ψi(r

↑
j + ξj(R))

]
det

[
ψi(r

↓
j + ξj(R))

]
. (25)

For a system ofN electrons andNion ions we write the backflow displacement for electron

i in the form

ξi =
N∑

j 6=i

ηijrij +
Nion∑

I

µiIriI +
N∑

j 6=i

Nion∑
I

(ΦjI
i rij + ΘjI

i riI) . (26)

In this expression ηij = η(rij) is a function of electron-electron separation, µiI = µ(riI) is

a function of electron-ion separation, and ΦjI
i = Φ(riI , rjI , rij) and ΘjI

i = Θ(riI , rjI , rij).

We parameterise the functions η, µ, Φ, and Θ using power expansions with optimisable

coefficients [57].
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Figure 4. Effect of the motion of an electron (black, with the arrow showing the
direction of motion) on the backflow-transformed coordinates of three opposite-spin
electrons (red, green and blue). Circles with the same colour intensity correspond to
the same instant in the motion.

3.5. Other wave functions

The wave function types of equations (21), (23), (24), and (25) can be combined in

various ways within the casino code [45] so that, for example, it is possible to use

Slater-Jastrow-pairing-backflow wave functions, etc. Of course the range of possible

wave functions could be extended by, for example, including Pfaffian wave functions

[67, 68], etc.

4. Optimisation of trial wave functions

Optimising trial wave functions is a very important part of QMC calculations which can

consume large amounts of human and computing resources. With modern stochastic

methods it is possible to optimise hundreds or even thousands of parameters in the wave

function. The parameters which can be optimised include those in the Jastrow factor,

the coefficients of determinants in a multi-determinant wave function, the parameters

in the backflow functions, and the parameters in single-particle and pairing orbitals.

The trial wave function used in a DMC calculation should ideally be optimised

within DMC, but reliable and efficient methods to achieve this are still under

development [69, 70]. Minimisation of the DMC energy has been performed “by hand”

for small numbers of parameters [5, 8]. Wave function optimisation within casino is

performed by minimising the VMC energy or its variance.

Optimising wave functions by minimising the variance of the energy is an old idea

dating back to the 1930s. The first application within Monte Carlo methods may have
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been by Conroy [71], but the method was popularised within QMC by the work of

Umrigar and coworkers [72]. It is now generally believed that it is better to minimise

the VMC energy than its variance, but it has proved more difficult to develop robust and

efficient algorithms for this purpose. Since the trial wave function forms used cannot

generally represent energy eigenstates exactly, except in trivial cases, the minima in the

energy and variance do not coincide. Energy minimisation should therefore produce

lower VMC energies, and although it does not necessarily follow that it produces lower

DMC energies, experience indicates that, more often than not, it does.

4.1. Variance minimisation

The variance of the VMC energy is

σ2(α) =

∫
[Ψα

T]2[Eα
L − Eα

V ]2 dR∫
[Ψα

T]2 dR
, (27)

where α denotes the set of variable parameters. The minimum possible value of σ2(α)

is zero, which is obtained if and only if Ψα
T is an exact eigenstate of Ĥ. In practice

the trial wave function forms used are incapable of representing the exact eigenstates.

Nevertheless, the minimum value of σ2(α) is still expected to correspond to a reasonable

set of wave function parameters.

Minimisation of σ2(α) is carried out via a correlated sampling approach in which a

set of configurations distributed according to [Ψα0
T ]2 is generated, where α0 is an initial

set of parameter values [73]. σ2(α) is then evaluated as

σ2(α) =

∫
[Ψα0

T ]2 wα
α0

[Eα
L − Eα

V ]2 dR∫
[Ψα0

T ]2 wα
α0
dR

, (28)

where the integrals contain weights, wα
α0

, given by

wα
α0

(R) =
[Ψα

T]2

[Ψα0
T ]2

, (29)

and EV is evaluated using

EV =

∫
[Ψα0

T ]2 wα
α0
Eα

L dR∫
[Ψα0

T ]2 wα
α0
dR

. (30)

After generating the initial set of configurations, the optimisation proceeds using

standard techniques to locate the new parameter values which minimise σ2(α). With

perfect sampling σ2(α) is independent of the initial parameter values α0. For real

(finite) sampling, however, one runs into problems because the values of wα
α0

for different

configurations can vary by many orders of magnitude if α and α0 differ substantially.

During the minimisation procedure a few configurations (often only one) acquire very

large weights and the estimate of the variance is reduced almost to zero by a poor set of

parameter values. This optimisation scheme is therefore often unstable, and in practice

modified versions of it are used.

The above scheme can be made much more stable by altering the weights wα
α0

.

A robust procedure is to set all the weights wα
α0

in equation (28) to unity, which is
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reasonable because the minimum value of σ2(α) = 0 is still obtained only if EL(R) is

a constant independent of R, which holds only for eigenstates of the Hamiltonian. We

call this the “unreweighted variance” minimisation method. The procedure is cycled

until the parameters converge to their optimal values (within the statistical noise). For

a number of model systems it was found that the trial wave functions generated by

unreweighted variance minimisation iterated to self-consistency have a lower variational

energy than wave functions optimised by reweighted variance minimisation [74].

We also have a particularly fast algorithm for optimising the linear parameters in

a Jastrow factor [74]. If the Jastrow factor of equation (22) can be written in the form

J(R) =
∑
n

αnfn(R) , (31)

then it can be shown that the unreweighted variance of the VMC energy is a quartic

function of the linear parameters αn. This has two advantages: (i) the unreweighted

variance can be evaluated extremely rapidly at a cost which depends only on the number

of parameters and is independent of the number of particles; and (ii) the unreweighted

variance along a line in parameter space is a quartic polynomial. This is useful because

it allows the exact global minimum of the unreweighted variance along the line to be

computed analytically by solving the cubic equation obtained by setting the derivative

equal to zero.

The unreweighted variance minimisation method works well for optimising Jastrow

factors, but it often performs poorly when parameters which alter the nodal surface

of ΨT are optimised. The problem is that the local energy EL generally diverges for

a configuration on the nodal surface. As the parameter values are changed during a

minimisation cycle the nodal surface can move through a configuration, resulting in a

very large (positive or negative) value of EL, which adversely affects the optimisation.

Such an effect would not occur when using the weights wα
α0

because they go to zero on

the nodal surface. We have developed two schemes which solve this problem. In the first

scheme we limit the weights by replacing them with min(wα
α0
,W ), so that the weight

goes to zero on the nodal surface but can never become larger than a chosen value W .

In the second scheme we use a weight which goes smoothly to zero as EL deviates from

an estimate of the energy.

Unreweighted variance minimisation belongs to a wider class of wave-function

optimisation methods which are based on minimising a measure of the spread of the set

of local energies. Another measure of spread that we have used with considerable success

for wave-function optimisation is the mean absolute deviation of the local energies of a

set of configurations from the median energy,

M =

∫
[Ψα0

T (R)]2|Eα
L (R)− Eα

m| dR∫
[Ψα0

T (R)]2 dR
. (32)

In this expression, Eα
m is the median value of the local energies evaluated with the

parameter values α. This is useful for optimising parameters that affect the nodal

surface, because outlying local energies are less significant.
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4.2. Energy minimisation

A well-known method for finding approximations to the eigenstates of a Hamiltonian is

to express the wave function as a linear combination of basis states gi,

ΨT(R) =
p∑

i=1

βi gi(R) , (33)

calculate the matrix elements Hij = 〈gi|Ĥ|gj〉 and Sij = 〈gi|gj〉, and solve the two-sided

eigenproblem
∑

j Hijβj = E
∑

j Sijβj by standard diagonalisation techniques. One can

also do this in QMC [75], although the statistical noise in the matrix elements leads

to slow convergence with respect to the number of configurations used to evaluate the

integrals.

Nightingale and Melik-Alaverdian [76] reformulated the diagonalisation procedure

as a least-squares fit rather than integral evaluation, which leads to much faster

convergence with the number of configurations. Let us assume that the set {gi} spans

an invariant subspace of Ĥ, which means that the result of acting Ĥ on any member of

the set {gi} can be expressed as a linear combination of the {gi}, i.e.,

Ĥgi(R) =
p∑

i=1

Eijgj(R) ∀ i . (34)

The eigenstates and associated eigenvalues of Ĥ can then be obtained by diagonalising

the matrix Eij. Within a Monte Carlo approach we could evaluate the gi(R) and Ĥgi(R)

for p uncorrelated configurations generated by a VMC calculation and solve the resulting

set of linear equations for the Eij. For problems of interest, however, the assumption

that the set {gi} span an invariant subspace of Ĥ does not hold and there exists no set of

Eij which solves equation (34). If we took p configurations and solved the set of p linear

equations, the values of Eij would depend on which configurations had been chosen.

To overcome this problem, a number of configurations M � p is sampled to obtain

an overdetermined set of equations which can be solved in a least-squares sense using

singular value decomposition. In fact Nightingale and Melik-Alaverdian recommended

that equation (34) be divided by ΨT(R) so that in the limit of perfect sampling the

scheme corresponds precisely to standard diagonalisation.

The method of Nightingale and Melik-Alaverdian works very well for linear

variational parameters as in equation (33). The natural generalisation to parameters

which appear non-linearly in ΨT is to consider a first-order Taylor expansion of the trial

wave function about the initial parameter values,

Ψα
T = Ψα0

T +
p∑

i=1

∂Ψα0
T

∂αi

(
αi − α0

i

)
+O

[
(α−α0)

2
]
, (35)

where, by comparison with equation (33), gi can be identified with the derivative of

the initial trial wave function with respect to the ith parameter, βi = αi − α0
i , and

the initial trial wave function represents an additional basis function g0 with a fixed

coefficient β0 = 1.
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In its simplest form this algorithm turns out to be highly unstable because

neglecting the second-order contribution in equation (35) is often inadequate. Umrigar

and coworkers [77, 78] showed how this method can be stabilised. The details of the

stabilisation procedures are quite involved and we refer the reader to the original papers

[77, 78] for the details. The stabilised algorithm works well and is quite robust. The

VMC energies given by this method are usually lower than those obtained from any of

the variance-based algorithms described in section 4.1, although the difference is often

small.

5. QMC calculations within periodic boundary conditions

QMC calculations for extended systems may be performed using cluster models or

periodic boundary conditions, just as in other techniques. Periodic boundary conditions

are preferred because they give smaller finite size effects. One can also use the standard

supercell approach for systems that lack three-dimensional periodicity in which a cell

containing, for example, a point defect and a small part of the host crystal, is repeated

periodically throughout space. Just as in other electronic structure methods, one must

ensure that the supercell is large enough for the interactions between defects in different

supercells to be small.

When using standard single-particle-like theories within periodic boundary

conditions such as density functional theory, the charge density and potentials are

taken to have the periodicity of a chosen unit cell or supercell. The single particle

orbitals can then be chosen to obey Bloch’s theorem and the results for the infinite

system are obtained by summing quantities obtained from the different Bloch wave

vectors within the first Brillouin zone. This procedure can also be applied within HF

calculations, although the Coulomb interaction couples the Bloch wave vectors in pairs.

In calculations with the wave functions described in section 3, these simplifications do

not arise and QMC calculations are performed at a single k-point. A single k-point

normally gives a poor representation of the infinite-system result, so that larger non-

primitive simulation cells are often used. It is also possible to perform QMC calculations

at a set of different k-points [79, 80] and average the results [81], which can substantially

reduce the size-dependence of the results, especially for metals

Many-body techniques such as QMC also suffer from finite size errors arising from

long-ranged interactions, most notably the Coulomb interaction. Coulomb interactions

are normally included within periodic boundary conditions calculations using the Ewald

interaction. Long-ranged interactions induce long-ranged correlation effects, and if the

simulation cell is not large enough these effects are described incorrectly. Such effects

are absent in local DFT calculations because the interaction energy is written in terms

of the electronic charge density, but HF calculations show very strong effects of this

kind and various ways to accelerate the convergence have been developed. The finite

size effects arising from the long-ranged interaction can be divided into potential and

kinetic energy contributions [82, 83]. The potential energy component can be removed
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from the calculations by replacing the Ewald interaction by the so-called model periodic

Coulomb (MPC) interaction [84, 85, 86]. Recent work has added substantially to our

understanding of finite size effects, and theoretical expressions have been derived for

them [82, 83], but at the moment it seems that they cannot entirely replace extrapolation

procedures.

Kwee et al. [87] have developed an alternative approach for estimating finite size

errors in QMC calculations. DMC results for the three-dimensional HEG are used to

obtain a system-size-dependent local density approximation (LDA) functional. The

correction to the total energy is given by the difference between the DFT energies for

the finite-sized and infinite systems. This approach appears promising, although it does

rely on the LDA giving a reasonable description of the system.

6. Pseudopotentials in QMC calculations

The computational cost of a DMC calculation increases with the atomic number Z of

the atoms as roughly Z5.5 [88, 89] which makes calculations with Z > 10 extremely

expensive. This problem can be solved by using pseudopotentials to represent the effect

of the atomic core on the valence electrons. The use of non-local pseudopotentials within

VMC is quite straightforward [90, 91], but DMC poses an additional problem because

the use of a non-local potential is incompatible with the fixed-node boundary condition.

To circumvent this difficulty an additional approximation is made. In the “locality

approximation” [92] the non-local part of the pseudopotential V̂nl is taken to act on the

trial wave function rather than the DMC wave function, i.e., V̂nl is replaced by Ψ−1
T V̂nlΨT.

The leading-order error term in the locality approximation is proportional to (ΨT−φ0)
2

[92], where φ0 is the exact fixed-node ground state wave function, although it can be

of either sign, so that the variational property of the algorithm is lost. Casula et al.

[93, 94] have introduced a fully variational “semi-localisation” scheme for dealing with

non-local pseudopotentials within DMC, which also shows superior numerical stability

to the locality approximation.

Currently it is not possible to generate pseudopotentials entirely within a QMC

framework, and therefore they are obtained from other sources. There is evidence that

HF theory provides better pseudopotentials than DFT for use within QMC calculations

[95], and we have developed smooth relativistic HF pseudopotentials for H to Ba and

Lu to Hg, which are suitable for use in QMC calculations [96, 97, 98]. Another set

of pseudopotentials for use in QMC calculations has been developed by Burkatzki et

al. [99]. In the few cases where reliable tests have been performed [100, 101], the

pseudopotentials of Refs. [96, 97, 98] and those of [99] have produced almost identical

results, although those of references [96, 97, 98] are a little more efficient as they have

smaller core radii.
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7. DMC calculations for excited states

DMC can be applied to excited states as the fixed node constraint ensures convergence

to the lowest energy state compatible with the nodal surface of the trial wave function.

DMC therefore gives the exact energy of any state if the nodal surface is exact, and

it gives an approximate energy with an approximate nodal surface. An important

difference from the ground state case is that the existence of a variational principle for

excited state energies cannot in general be guaranteed, and it depends on the symmetry

of the trial wave function [102]. In practice DMC works quite well for excited states

[20, 21, 103, 104, 25, 26, 105]. Ceperley and Bernu [106] have devised a method which

combines DMC and the variational principle to calculate the eigenvalues of several

different excited states simultaneously. However, this method suffers from stability

problems in large systems.

8. Sources of error and statistical analysis

8.1. Sources of error in DMC calculations

The potential sources of errors in DMC calculations may be summarised as follows.

• Statistical errors. The standard error in the mean is proportional to 1/
√
M , where

M is the number of particles moves. It therefore costs a factor of 100 in computer

time to reduce the statistical error bars by a factor of 10. On the other hand,

a random error is much better than a systematic one as its size can normally be

reliably estimated.

• Fixed-node error. This is the central approximation of the DMC technique, and is

normally the limiting factor in the accuracy of the results.

• Time-step bias. The short time approximation leads to a bias in the f distribution

and hence in expectation values. This bias is often significant and can be of either

sign, but it can be largely removed by performing calculations for different time

steps and extrapolating to zero time step or by simply choosing a small enough

time step. An example of time-step extrapolation is shown in figure 5.

• Population control bias. The f distribution is represented by a finite population of

configurations which fluctuates due to branching. The population may be controlled

in various ways, but this introduces a population control bias which is positive and

falls off as the reciprocal of the population. In practice the population control bias

is normally so small that it is difficult to detect [107, 5].

• Finite size errors within periodic boundary conditions calculations. It is important

to correct for finite size effects carefully, as mentioned in section 5.

• The pseudopotential approximation inevitably introduces errors. In DMC there

is an additional error arising from the localisation [92] or semi-localisation [94] of

the non-local pseudopotential operator. The localisation error appears to be quite

small in the cases for which it has been tested [65].
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Figure 5. DMC energy against time step for a 64-electron ferromagnetic 2D hexagonal
Wigner crystal at density parameter rs = 50 a.u. with a Slater-Jastrow wave function.
The solid line is a linear fit to the data.

8.2. Practical methods for handling statistical errors in QMC results

Two main practical problems are encountered when dealing with errors in the QMC

data: the data are serially correlated and the underlying probability distributions are

non-Gaussian. The probability distribution of the local energies has |E − E0|−4 tails,

where E0 is a constant. These tails arise from singularities in the local energy such

as the divergence at the nodal surface [96, 97], as shown in figure 6. In consequence,

although the mean energy and its variance are well defined, the variance of the variance

is infinity. For other quantities the problem may be even more severe; for example,

the probability distributions for the Pulay terms in the forces described in section 10.2

decay as |F − F0|−5/2, so that the variance of the force is infinity [108]. Reasonably

robust estimates of the errors can still be made, although it has to be accepted that

they are not as well founded as for Gaussian statistics.

The data produced by VMC and DMC calculations are correlated from one step

to the next. The problem is very important in DMC because short time steps are

used to reduce the effect of the approximation in the Green’s function. The simulation

effectively produces only one independent data point per correlation time, so that the

estimate of the statistical error obtained on the assumption that the data points are

independent is too small. We use the “blocking method” to obtain an estimate of the

error. In this approach adjacent data points are averaged to form block averages [109].

This procedure is carried out recursively so that after each blocking transformation the

number of data points is reduced by one half. An example of blocking is shown in

figure 7. The computed value of the standard error ∆k increases with the number of

blocking transformations k until a limiting value is reached when the block length starts

to exceed the correlation time. The standard error in the mean is estimated by the
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Figure 6. Variation in the local energy EL of a silane (SiH4) molecule as an electron
moves through the nodal surface at x = 0. The local energy diverges as 1/x.

value of ∆ on the plateau. Because the sizes of the error bars on QMC expectation

values are themselves approximate estimates, apparent outliers in QMC data can be

more common than one might expect on the basis of Gaussian statistics.

Figure 7. Blocking analysis of data for an (all-electron) lithium atom. The blocking
analysis indicates that the true standard error in the mean is about ∆ = 2.6 × 10−5

a.u., which is reached at about blocking transformation k = 10, while the raw value is
∆0 = 7.0× 10−6 a.u.
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9. Evaluating other expectation values

As mentioned in section 1, VMC and DMC can be used to calculate expectation values

of many time-independent operators, not just the Hamiltonian. Typical quantities of

interest are particle densities, pair correlation functions, and one- and two-body density

matrices, all of which can be evaluated using the casino code. It is not possible to obtain

unbiased expectation values directly from the DMC distribution, f(R), for operators

which do not commute with the Hamiltonian (which includes all of the quantities

mentioned in the previous sentence). Unbiased (within the fixed-node approximation)

estimates can be obtained as pure expectation values,

〈Â〉 =

∫
φ0(R)Âφ0(R) dR∫

φ2
0(R) dR

. (36)

Pure expectation values can be obtained using a variety of methods: the approximate

(but often very accurate) extrapolation technique [55], the future walking technique

[110, 111] which is formally exact but statistically poorly behaved, and the reptation

QMC technique of Baroni and Moroni [112], which is formally exact and well behaved,

but quite expensive. The extrapolation technique can be used for any operator, but

the future walking and reptation techniques are limited to spatially local multiplicative

operators.

Here we shall illustrate the use of the extrapolation technique [55] to calculate

the charge density of a Wigner crystal. The pure estimate of the charge density ρ is

approximated as

ρext ' 2ρDMC − ρVMC. (37)

The errors in both the VMC and DMC charge densities ρVMC and ρDMC are linear in

the error in the trial wave function, but the error in the extrapolated estimate ρext is

quadratic in the error in the wave function.

At low densities the HEG freezes into a Wigner crystal to minimise the electrostatic

repulsion between electrons. The charge density of a 2D Wigner crystal [8, 113] close to

the crystallisation density is shown in figure 8. VMC, DMC and extrapolated results are

shown for two different trial wave functions. It can be seen that the dependence of the

extrapolated estimate on the trial wave function is much smaller than for the raw VMC

and DMC estimates, so we may have more confidence in the extrapolated estimate of

the charge density.

10. Energy differences and energy derivatives

In electronic structure theory one is almost always interested in the differences in energy

between systems. All electronic structure methods for complex systems rely for their

accuracy on the cancellation of errors in energy differences. In DMC this helps with

all the sources of error mentioned in section 8 except the statistical errors. Fixed-node

errors tend to cancel because the DMC energy is an upper bound, but even though
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Figure 8. Charge density of a triangular antiferromagnetic Wigner crystal at density
parameter rs = 30 a.u., plotted along a line between a pair of nearest-neighbour lattice
sites. Two different wave functions are used: wave function 1 was optimised by variance
minimisation, while wave function 2 was optimised by energy minimisation. The inset
shows the extrapolation with wave function 1 at the minimum in greater detail.

DMC often retrieves 95% or more of the correlation energy, non-cancellation of nodal

errors is the most important source of error in DMC results.

10.1. Energy differences in QMC

Correlated sampling methods allow the computation of the energy difference between

two similar systems with a smaller statistical error than those obtained for the individual

energies [73]. Correlated sampling is relatively straightforward in VMC, and a version

of it is described in section 4.1 in the context of optimising wave functions by variance

minimisation.

10.2. Energy derivatives (forces) in QMC

Atomic forces are useful for relaxing the structures of molecules and solids, calculating

their vibrational properties, and for performing molecular dynamics (MD) simulations.

It has proved difficult to develop accurate and efficient methods for calculating atomic

forces within QMC, although considerable progress has been made in recent years.

Difficulties have arisen in obtaining accurate expressions for DMC forces which can

readily be evaluated and in the statistical properties of the expressions, which are not

as advantageous as those for the energy.

According to the Hellmann-Feynman theorem (HFT), the derivative of the energy



Continuum variational and diffusion quantum Monte Carlo calculations 25

with respect to a parameter λ in the Hamiltonian is

E ′ =

∫
Ψ Ĥ ′ Ψ dR∫
Ψ Ψ dR

, (38)

where the primes denote derivatives with respect to λ. This expression is valid when Ψ

is an exact eigenstate of Ĥ.

Unfortunately the HFT is not normally applicable within QMC because the wave

functions are approximate. Exact expressions for the VMC and DMC forces must

therefore contain additional Pulay terms which depend on Ψ′
T. To define the force

properly it is therefore necessary to define and evaluate Ψ′
T.

The DMC algorithm solves for the ground state of the fixed-node Hamiltonian

exactly and therefore the HFT holds. Unfortunately the fixed-node Hamiltonian

is different from the physical Hamiltonian because it contains an additional infinite

potential barrier on the nodal surface of ΨT which forces the DMC wave function φ0

to go to zero. As λ varies, the nodal surface, and hence the infinite potential barrier,

moves, giving a contribution to Ĥ ′ [114, 115, 116] which depends on ΨT and Ψ′
T and is

classified as a Pulay term.

The Pulay terms arising from the derivative of the mixed estimate of the energy

of equation (20) contain φ′0, the derivative of the DMC wave function. This quantity

cannot readily be evaluated, and the approximation

φ′0
φ0

' Ψ′
T

ΨT

(39)

has normally been used [117, 118, 119, 120, 121, 122, 116, 123, 124]. However, it leads to

errors of first order in (ΨT−φ0) and (Ψ′
T−φ′0); therefore its accuracy depends sensitively

on the quality of ΨT and Ψ′
T, and in practice this approximation is often inadequate.

The pure DMC energy,

ED =

∫
φ0Ĥφ0 dR∫
φ0φ0 dR

, (40)

is equal to the mixed DMC energy. Forces may also be calculated within pure DMC,

and although this is more expensive it brings significant advantages. The derivative E ′
D

contains the derivative of the DMC wave function, φ′0. However, Badinski et al. [116]

showed that φ′0 can be eliminated from the pure DMC expression, giving the exact result

E ′
D =

∫
φ0φ0 φ

−1
0 Ĥ ′φ0 dR∫

φ0φ0 dR
− 1

2

∫
φ0φ0 Ψ−2

T |∇RΨT|Ψ′
T dS∫

φ0φ0 dR
, (41)

where dS denotes an element of the nodal surface. Unfortunately it is not

straightforward to evaluate integrals over the nodal surface. The nodal surface integral

can be converted into a volume integral in which φ′0 does not appear using an

approximation with an error of order (ΨT − φ0)
2, giving

E ′
D =

∫
φ0φ0

[
φ−1

0 Ĥ ′φ0 + Ψ−1
T

(
Ĥ − ED

)
Ψ′

T

]
dR∫

φ0φ0 dR
+ (42)∫

ΨTΨT (EL − ED) Ψ−1
T Ψ′

T dR∫
ΨTΨT dR

+O[(ΨT − φ0)
2] . (43)
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This expression is readily calculable if one generates configurations distributed according

to the pure (φ2
0) and variational (Ψ2

T) distributions. The approximation is in the Pulay

terms, which are smaller in pure than in mixed DMC and, in addition, the approximation

in equation (42) is second order compared with the first-order error in equation (39).

Equation (42) satisfies the zero variance condition; if ΨT and Ψ′
T are exact the variance

of the force obtained from equation (42) is zero. Equation (42) has been used to obtain

very accurate forces in small molecules [124, 108]. The calculation of accurate DMC

forces is still in its infancy, but it does appear that equation (42) offers a very promising

way forward.

11. Conclusions

QMC methods provide a framework for computing the properties of correlated quantum

systems to high accuracy within polynomial time [2], facilitating applications to large

systems. They can be applied to fermions and bosons with arbitrary inter-particle

potentials and external fields. These intrinsically parallel methods are ideal for utilising

current and next-generation massively parallel computers. Their accuracy, generality

and wide applicability suggest that they will play an important role in improving our

understanding of the behaviour of large assemblies of quantum particles.

It is believed [125] that a complete solution to the fermion sign problem may be

impossible, and any exact fermion method may be exponentially slow on a classical

computer. Accurate quantum chemistry techniques such as the “gold standard” coupled

cluster with single and double excitations and perturbative triples [CCSD(T)] have been

applied with considerable success to correlated electron problems but, although they are

also polynomial time algorithms, their cost increases much more rapidly with system

size than for QMC methods. DFT methods have proved extremely useful in describing

correlated electron systems, but there are many examples where the accuracy of current

density functionals has proved wanting. It is important to remember that trial wave

functions for QMC calculations could be improved by developing new wave function

forms and better optimisation methods, whereas improving approximate DFT methods

requires the development of better density functionals, which seems likely to be a much

harder problem.

These considerations motivate the development of approximate QMC methods such

as those described in this review. Although the basics of the DMC algorithm used

by Ceperley and Alder in 1980 [3] have remained unchanged, enormous progress has

been made in using more complex trial wave functions and in optimising the many

parameters in them. There is every reason to believe that the current high rate of

progress will continue for many years to come. Although these QMC methods will

remain approximate, it is already clear that sophisticated computer packages [44] such

as the casino code [45, 98] can deliver highly accurate results.
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