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Why do we do MD simulations?

• To calculate observables - static, dynamic

• To see what happens
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Changing Ensemble

• MD is nominally energy conserving - NVE ensemble

• Usually more interested in NVT or NPT ensemble

• Need temperature regulation - Thermostat
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Thermostatted MD

• A thermostat alters the forces and/or velocities

• These alterations can be deterministic or stochastic
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Non-equilibrium MD

Non-equilibrium simulations or bad equilibrium simulations
generate heat:

• Non-Hamiltonian

• QM/MM with discontinuous force calculation

• F 6= −∇U

Here we can only hope a thermostat gives the correct average
temperature.



Molecular Dynamics Thermostats Adaptive Langevin thermostat Conclusions and Further Work

Deterministic Stochastic

Rescaling

Temp. gradients

Andersen

Unphysical (MC)

Rescale velocities such that

Ek =
1

2
NdofkBT

Every M steps choose a particle
and reassign its velocity from
Maxwellian distribution

Nosé-Hoover

Bad sampling

Langevin

No feedback

Hoover, PhysRevA 31 1695 Quigley, Probert, JChemPhys 120(24) 11432
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′)
〉

= δijδ(t − t ′)



Molecular Dynamics Thermostats Adaptive Langevin thermostat Conclusions and Further Work

Nosé-Hoover Thermostat

The Nosé-Hoover thermostat relies on chaotic trajectories

R.G. Winkler et. al., JChemPhys 102(22) 9018
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Langevin Thermostat

The Langevin thermostat cannot be used when there is heating -
incorrect average temperature:

1728 Si atoms, with Stillinger-Weber potential
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Requirements

• Feedback - Nosé-Hoover

• Stochastic - Langevin

• Modified Fluctuation-Dissipation relation
Kühne et al., PRL 98 066401 (2007)
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Equations of Motion

ṙi =
pi

mi

ṗi = Fi − γpi +
√

ΓÃ(t)

s(t)

ṡ =
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1−

〈Tk〉τ
T

)
β

〈f (t)〉τ =
1

τ

∫ t

−∞
e

t′−t
τ f (t ′)dt ′

Choose β such that oscillations in s, and so 〈Tk〉, are critically
damped (approximately)
Caveat: s < 0 makes no sense (Ã and −Ã have same properties)
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Molecular Dynamics Thermostats Adaptive Langevin thermostat Conclusions and Further Work

Equations of Motion
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Results



Molecular Dynamics Thermostats Adaptive Langevin thermostat Conclusions and Further Work

Conclusions and Further Work

Conclusions:

• Adding simple feedback to Langevin thermostat allows it to
deal with non-equilibrium systems

• Canonical velocity distributions are recovered

Further Work:

• Recover Newtonian dynamics when temperature is OK
Leimkuhler et al., JChemPhys 128 074105

• Re-derive using Fokker-Planck equation in extended
phase-space
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Thank-you for listening!

Any questions?
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Nosé-Hoover-Langevin Thermostat?

ṙi =
pi

mi

ṗi = Fi − ξpi

Q ξ̇ =

[∑
i

p2
i

mi
− NkBT

]
− γQξ +

√
ΓÃ(t)

Γ = 2γQkBT

• Gives canonical probability density in equilibrium simulations

• Has feedback to deal with non-equilibrium simulations

• When temperature has stabilised ξ decays - dynamics is more
Newtonian
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