< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An adaptive Langevin thermostat for non-equilibrium molecular dynamics simulations

Steven Winfield

ESDG 21st May 2008 Molecular Dynamics

Thermostats

Adaptive Langevin thermostat

Conclusions and Further Work

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ● ●

Molecular Dynamics

Thermostats

Adaptive Langevin thermostat

Conclusions and Further Work

Conclusions and Further Work

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ● ●

Why do we do MD simulations?

- To calculate observables static, dynamic
- To see what happens

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Changing Ensemble

- MD is nominally energy conserving NVE ensemble
- Usually more interested in NVT or NPT ensemble
- Need temperature regulation Thermostat

Thermostatted MD

- A thermostat alters the forces and/or velocities
- These alterations can be deterministic or stochastic

Non-equilibrium MD

Non-equilibrium simulations or bad equilibrium simulations generate heat:

- Non-Hamiltonian
- QM/MM with discontinuous force calculation
- $F \neq -\nabla U$

Here we can only hope a thermostat gives the correct average temperature.

Stochastic
Andersen
Every <i>M</i> steps choose a particle
and reassign its velocity from
Maxwellian distribution
Langevin
Quigley, Probert, JChemPhys 120 (24) 11432
$\dot{r}_i = \frac{p_i}{m_i}$
$\dot{p}_i = F_i - \gamma p_i + \sqrt{\Gamma} \tilde{A}_i(t)$
$ \Gamma = 2\gamma m_i k_B T \left< \tilde{A}_i(t) \right> = 0 $
$\left\langle ilde{A}_{i}(t) ilde{A}_{j}(t') ight angle =\delta_{ij}\delta(t-t')$

T1

plecular Dynamics I hermostats Adapti	ve Langevin thermostat Conclusions and Further Work
Deterministic	Stochastic
Rescaling Temp. gradients	Andersen Unphysical (MC)
Rescale velocities such that	Every <i>M</i> steps choose a particle
1	and reassign its velocity from
$E_k = \frac{1}{2} N_{ m dof} k_B T$	Maxwellian distribution
-	
Nosé-Hoover Bad sampling	Langevin No feedback
Hoover, PhysRevA 31 1695	Quigley, Probert, JChemPhys 120 (24) 11432
$\dot{r}_i = rac{p_i}{m_i}$	$\dot{r}_i = \frac{p_i}{m_i}$
$\dot{p}_i = F_i - \xi p_i$	$\dot{p}_i = F_i - \gamma p_i + \sqrt{\Gamma} \tilde{A}_i(t)$
$Q\dot{\xi} = \sum_{i} rac{p_i^2}{m_i} - N_{ m dof} k_B T$	$\Gamma = 2\gamma m_i k_B T \left< \tilde{A}_i(t) \right> = 0$
1	$\left< ilde{\mathcal{A}}_i(t) ilde{\mathcal{A}}_j(t') ight> = \delta_{ij}\delta(t-t')$
	《曰》《卽》《臣》《臣》 臣 今의

▲ロト ▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへの

Nosé-Hoover Thermostat

The Nosé-Hoover thermostat relies on chaotic trajectories

R.G. Winkler et. al., JChemPhys 102(22) 9018

・ロト ・聞ト ・ヨト ・ヨト

-

Langevin Thermostat

The Langevin thermostat cannot be used when there is heating - incorrect average temperature:

1728 Si atoms, with Stillinger-Weber potential

Conclusions and Further Work

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ● ●

- Feedback Nosé-Hoover
- Stochastic Langevin
- Modified Fluctuation-Dissipation relation Kühne et al., PRL 98 066401 (2007)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Equations of Motion

$$\dot{r}_i = rac{p_i}{m_i}$$

 $\dot{p}_i = F_i - \gamma p_i + \sqrt{\Gamma} \tilde{A}(t)$

Equations of Motion

$$\dot{r}_{i} = \frac{p_{i}}{m_{i}}$$

$$\dot{p}_{i} = F_{i} - \gamma p_{i} + \sqrt{\Gamma} \tilde{A}(t) s(t)$$

$$\dot{s} = \left(1 - \frac{\langle T_{k} \rangle_{\tau}}{T}\right) \beta$$

$$\langle f(t) \rangle_{\tau} = \frac{1}{\tau} \int_{-\infty}^{t} e^{\frac{t'-t}{\tau}} f(t') dt'$$

Choose β such that oscillations in s, and so $\langle T_k \rangle$, are critically damped (approximately)

Equations of Motion

$$\dot{r}_{i} = \frac{p_{i}}{m_{i}}$$

$$\dot{p}_{i} = F_{i} - \gamma p_{i} + \sqrt{\Gamma} \tilde{A}(t) s(t)$$

$$\dot{s} = \left(1 - \frac{\langle T_{k} \rangle_{\tau}}{T}\right) \beta$$

$$\langle f(t) \rangle_{\tau} = \frac{1}{\tau} \int_{-\infty}^{t} e^{\frac{t'-t}{\tau}} f(t') dt'$$

Choose β such that oscillations in s, and so $\langle T_k \rangle$, are critically damped (approximately) Caveat: s < 0 makes no sense (\tilde{A} and $-\tilde{A}$ have same properties)

Conclusions and Further Work

Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions and Further Work

Conclusions:

- Adding simple feedback to Langevin thermostat allows it to deal with non-equilibrium systems
- Canonical velocity distributions are recovered

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conclusions and Further Work

Conclusions:

- Adding simple feedback to Langevin thermostat allows it to deal with non-equilibrium systems
- Canonical velocity distributions are recovered

Further Work:

• Recover Newtonian dynamics when temperature is OK

Leimkuhler et al., JChemPhys 128 074105

• Re-derive using Fokker-Planck equation in extended phase-space

Molecular Dynamics

Thermostats

Adaptive Langevin thermostat

Conclusions and Further Work

Thank-you for listening!

Any questions?

Nosé-Hoover-Langevin Thermostat?

$$\dot{r}_{i} = \frac{p_{i}}{m_{i}}$$
$$\dot{p}_{i} = F_{i} - \xi p_{i}$$
$$Q\dot{\xi} = \left[\sum_{i} \frac{p_{i}^{2}}{m_{i}} - Nk_{B}T\right] - \gamma Q\xi + \sqrt{\Gamma}\tilde{A}(t)$$
$$\Gamma = 2\gamma Qk_{B}T$$

- Gives canonical probability density in equilibrium simulations
- Has feedback to deal with non-equilibrium simulations
- When temperature has stabilised ξ decays dynamics is more Newtonian