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Numerical Integration

Unkown function, r sample points
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Evenly sampled grid:

/01 fx)de =) anf(z,) , ex AP~ <1>p/D
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Points sampled randomly, with PDF P(z):

/01 f(x)dx ~ %Zf(ﬂfn)/P(ﬂ?n) e
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Quantum Monte Carlo (VMC)

Sample 3N dimensional space with PDF P(R)

S¢2E /P (WHY)+Y

Est [Eiot] = S2/P o () + X

where Ej, = ¢_1ﬁ¢.

Simplest case is ‘Standard Sampling: Choose P(R) = Ay(R)?, then

Est [Fy] = %ZEL _ WlHW) |y

(Y1)

e \V is the random error in a sum of random variables, so what is its distribution?

e IF the CLT is valid then it is Gaussian with mean 0, and variance 0/7“1/2.
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3N — 1 dimension

Why?: Easier to deal with the general case analytically

A change of the random variable from spatial to energy:
Etot — /‘/¢2ELd3NR//‘/¢2d3NR

_ / " Pa(E)EdE

with
P(R)

Py (E :/ A e ]
w(E) E=E;, |VrEL|

e A histogram of F/;, approximates the ‘seed’ PDF sz

e |Vr F| results from curvilinear co-ordinates and change of variables.

e Useless numerically, but useful analytically.
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What can we say about P2?

Singularities in the local energy:

1 V& 1 7
PR = T T

e £ (R) = E,, if the trial wavefunction, 1), is exact

e Enforce Kato cusp conditions — no Coulomb singularities

e Nodal surface is 1) = 0, and is 3N — 1 dimensional

e Kinetic energy part gives singularity on a 3N — 1 dimensional surface

e Singularities provide information about Py for large | |
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What can we say about P2?

P(R) B
PolE :/ ) sN-IR
w2 (E) oo, VL]

‘F

nodal surface
v o= a5+ ...
Ep = b.ST +...
PR)/|VE| = ST+ ...
Pp(E) = d 4B+ ...

or more completely

€1

Pp(E) = (E - Ey)™* (eo + R

+> |E| > Ej
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Example: All-electron isolated Carbon atom

e Jastrow + 48 determinants + backflow:

v =e’®N"q, D! (R)D)(R) with R =R/(R)
100 -

1072

O'PwQ (EL)

1076

Estimated seed probability density function

e 93% correlation energy at VMC level

. 3 o
Also shown is 2 ————1, and a Normal distribution
T ot +(E—p)
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Random error in total energy estimate

1
(Ey1+...+ E))

r

Est [Etot] =

Product of probability of 7~ samples energies that add up to r F;,; — convolution integrals

Pr:2(2Etot) — /P¢2 (El)P¢2(E2)(S(E1 ‘I— EQ — 2Et0t)dE1dE2 — P¢2 * P¢2
PT(TEt0t> = P¢2*P¢2*...*P¢2

e Take Fourier transform of Pyz(E)
e Take the 7" power
e Take the inverse Fourier transform

e Rescale some variables to get the PDF of averages instead of sum
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PDF of estimate of Total energy

100 [ | |

U/ﬁpr<Et0t)

1072

-10 - 0 5! 10

(Brot — p)/1/0
e Approximate PDF from 10* estimates of total energy, with 7 = 1073

e For small | E/|, PDF is dominated by \/%e—gﬁ/z

e For large | E/|, PDF is dominated by g%l/x‘l (A =~ 1 for Carbon trial wavefunction)

e CLT is true Iin its weakest form
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PDF of estimate of the ‘Residual Variance’, v

Optimisation of wavefunctions using the ‘residual variance’, v
(H = Biot) ¥ = 6 = (B, — Eyor) ¢
v = [6?dR > 0, and zero for exact 1)

e To optimise the wavefunction v is usually minimised

e Analyse effect of tails, as before:

o = LL e ([557])

9 v —o?| v — 02|
X | — v — K K
sgn {v o } 1/3 2 + g3 2
with the ‘width’ of the PDF decided by the magnitude of the tails
6A2]"?
v = [] o’ (2)
T
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PDF of estimate of the ‘Residual Variance’, v
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(v—0%)/(27)

e Approximate PDF from 10* estimates of residual variance, with 7 = 103

e Small v, x *’. Large v o 1/25/2

e PDF has no variance, 7y has no vigorous statistical estimate and is & r1/3
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e CLT is valid in its weakest form for the total energy
e CLT not valid for residual variance
e CLT is likely to be invalid for estimates of other physical quantites

® Because: ¢2 samples E';, rarely where it is largest, at the nodal surface

Can the CLT be reinstated ?
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Residual sampling

Instead of sampling with P = A1)?, sample with P = A? /w, then

SwEy _ (W|H[Y) +Y
Sw o (PlY) +X

ESt [Etot] =

and the residual variance,

2 Y w(EL = Eie)?  [VP(EL — Epor)?dR +Y
Est [/5 dR] _ L _ T

Choose the weighting function

62

w(EL) - (EL . EO)Q _|_€2

to ‘interpolate’ beween sampling the numerator and denominator perfectly.
e No singularities, and no power law tails

e Quotient of two correlated random variables, each a sum of random variables
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Fieller's Theorem

® (f12, j11) that give Est = 0/ 111
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Fieller's Theorem

e (12, pu1) that give Est = o /1y

e Ellipse containing 39% of probability from covariance matrix and bivariate CLT
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Fieller's Theorem

o (112, pu1) that give Est = o /g

e Ellipse containing 39% of probability from covariance matrix
e Wedge that contains 68.3% of probability

= my < pg/u1 < msy with confidence 68.3%
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Estimate of total energy

-37.86 -37.84 -37.82
ESt[Etot]

Histogram of 103 total energy estimates, each total energy estimate from 103 configurations.

e Residual sampling (filled) and standard sampling (unfilled) are not significantly different
e Residual sampling reduces error by ~ 30%
e For other systems standard sampling may give ‘power law’ outliers (depending on \)

e For all systems residual sampling does not give ‘power law’ outliers
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Estimate of residual variance

1000 | | | |
100
10
1
0.1 ( ] HI L [
0 0.05 0.1 0.15 0.2 0.25
Est[v]

Histogram of 102 residual variance estimates, each estimated from 10 configurations.

e Residual sampling and standard sampling are very different
e Standard sampling shows the v~°/2 tails and outliers expected
e Residual sampling gives well defined confidence limits for estimate via the bivariate CLT

e Standard sampling does not
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Optimisation

1) Take samples using wavefunction with parameter o, { R},

2) These define random sample from a distribution of Optimisation functions, O ()

)
)
3) Find the minimum of O(«), at & = Qpin
4) set ay = Qpin, and returnto 1)

What is the distribution of O(a)?

(a): ao—|—31<C¥—C¥0)—|—...
b0+b1(04—040)+...

e For each type of sampling/optimisation this expansion gives statistics of random error

e For ‘Standard Sampling’ error is not normal unless the nodes are suppressed by introducing a

weight function into O () solely for this purpose (eg | g(Fr)d%d*NR).

e For Residual sampling the error is always normal
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Optimisation

r = 10° configurations.

Total energy Residual variance
-37.82 I I 0.1 I I |
s -37.83 —
< o - ] 005 — K N L
= - - > - N N
mg ) " 1 Res’ I Res.
-37.84 |- —
Eexp
| | | | | o U | | | |
1 2 3 4 5 1 2 3 4 5
no. cycle. no. cycle.

Std. - standard sampling with nodal surface ‘suppressed’ (93% E.orr)

Res. - residual sampling of residual variance (95% E.o,r)

e New sampling provides lower total energy and a lower residual variance than standard sampling

with nodal surface ‘suppressed’
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Conclusions

e \We cannot assume the CLT is true for estimates in ‘standard sampling QMC’
e ‘r large’ enough must be shown to be true for each estimate in ‘standard sampling QMC’
e The CLT can be reinstated by using an alternative sampling strategy

e Random functions whose minimum gives ‘optimum’ wavefunctions are not generally normally dis-

tributed. Some do not converge as r — 00O

e The residual sampling strategy can guarantee that the CLT is valid for estimates and optimisation

functions, as long as they exist

e With residual sampling optimisation functions can be chosen on physical grounds - to give a good

wavefunction at the nodal surface and small fixed node error in DMC
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