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Numerical Integration

Unkown function, r sample points
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Evenly sampled grid:

∫ 1

0
f(x)dx ≈

∑
anf(xn) , ǫ ∝ ∆p ≈

(
1

r

)p/D

Points sampled randomly, with PDF P (x):
∫ 1

0
f(x)dx ≈ 1

r

∑
f(xn)/P (xn) , e ∝ 1√

r

ESDG Page 2



ESDG

Quantum Monte Carlo (VMC)

Sample 3N dimensional space with PDF P (R)

Est [Etot] =

∑
ψ2EL/P∑
ψ2/P

=
〈ψ|Ĥ|ψ〉 + Y

〈ψ|ψ〉 + X

where EL = ψ−1Ĥψ.

Simplest case is ‘Standard Sampling’: Choose P (R) = Aψ(R)2, then

Est [Etot] =
1

r

∑
EL =

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 + W

• W is the random error in a sum of random variables, so what is its distribution?

• IF the CLT is valid then it is Gaussian with mean 0, and variance σ/r1/2.
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3N → 1 dimension

Why?: Easier to deal with the general case analytically

A change of the random variable from spatial to energy:

Etot =
∫

V
ψ2ELd

3N
R/

∫

V
ψ2d3N

R

=
∫ ∞

−∞
Pψ2(E)EdE

with

Pψ2(E) =
∫

E=EL

P (R)

|∇REL|
d3N−1

R

• A histogram of EL approximates the ‘seed’ PDF Pψ2

• |∇REL| results from curvilinear co-ordinates and change of variables.

• Useless numerically, but useful analytically.
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What can we say about Pψ2?

Singularities in the local energy:

EL(R) = −1

2

∇2
R
ψ

ψ
+
∑

i<j

1

rij
−
∑

i

Z

ri

• EL(R) = Etot if the trial wavefunction, ψ, is exact

• Enforce Kato cusp conditions → no Coulomb singularities

• Nodal surface is ψ = 0, and is 3N − 1 dimensional

• Kinetic energy part gives singularity on a 3N − 1 dimensional surface

• Singularities provide information about Pψ2 for large |E|
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What can we say about Pψ2?

Pψ2(E) =
∫

E=EL

P (R)

|∇REL|
d3N−1

R

S⊥n̂

nodal surface

ψ = a1S⊥ + . . .

EL = b−1S
−1
⊥ + . . .

P (R)/|∇EL| = c4S
4
⊥ + . . .

Pψ2(E) = d−4E
−4 + . . .

or more completely

Pψ2(E) = (E − E0)
−4

(

e0 +
e1

(E − E0)
+ . . .

)

|E| ≫ E0
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Example: All-electron isolated Carbon atom

• Jastrow + 48 determinants + backflow:

ψ = eJ(R)
∑

m

amD
↑
m(R′)D↓

m(R′) with R
′ = R

′(R)

(EL − µ)/σ

σ
P̂
ψ

2
(E

L
)

-100 -50 0 50 100
10−9

10−6

10−3

100

Estimated seed probability density function

• 93% correlation energy at VMC level

Also shown is
√

2
π

σ3

σ4+(E−µ)4
, and a Normal distribution
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Random error in total energy estimate

Est [Etot] =
1

r
(E1 + . . .+ Er)

Product of probability of r samples energies that add up to rEtot → convolution integrals

Pr=2(2Etot) =
∫
Pψ2(E1)Pψ2(E2)δ(E1 + E2 − 2Etot)dE1dE2 = Pψ2 ⋆ Pψ2

Pr(rEtot) = Pψ2 ⋆ Pψ2 ⋆ . . . ⋆ Pψ2

• Take Fourier transform of Pψ2(E)

• Take the rth power

• Take the inverse Fourier transform

• Rescale some variables to get the PDF of averages instead of sum

Pr(y) =
1√
2π

[

1 +
η√
r

d3

dy3
+ O

(
1

r

)]

e−y
2/2 +

[
λ

3π

1√
r

d3

dy3
D

(
y√
2

)

+ O
(

1

r

)]

y = (Etot − µ)/σ
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PDF of estimate of Total energy

(Etot − µ)
√

r/σ

σ
/√

rP̂
r
(E

to
t)

-10 -5 0 5 10
10−6

10−3

100

• Approximate PDF from 104 estimates of total energy, with r = 103

• For small |E|, PDF is dominated by 1√
2π
e−x

2/2

• For large |E|, PDF is dominated by
√

2
π

λ√
r
1/x4 (λ ≈ 1 for Carbon trial wavefunction)

• CLT is true in its weakest form
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PDF of estimate of the ‘Residual Variance’, v

Optimisation of wavefunctions using the ‘residual variance’, v
(
Ĥ − Etot

)
ψ = δ = (EL − Etot)ψ

v =
∫
δ2dR ≥ 0, and zero for exact ψ

• To optimise the wavefunction v is usually minimised

• Analyse effect of tails, as before:

Pr(v) =

√
3

π

1

2γ

[
v − σ2

2γ

]2

exp




[
v − σ2

2γ

]3




×


−sgn
[
v − σ2

]
K1/3




∣∣∣∣∣
v − σ2

2γ

∣∣∣∣∣

3


+K2/3




∣∣∣∣∣
v − σ2

2γ

∣∣∣∣∣

3








with the ‘width’ of the PDF decided by the magnitude of the tails

γ =

[
6λ2

πr

]1/3

σ2 (1)
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PDF of estimate of the ‘Residual Variance’, v

(v − σ2)/(2γ)

2γ
P̂
r
(v

)

0 50
10−910−6

10−3

100

• Approximate PDF from 104 estimates of residual variance, with r = 103

• Small v, ∝ ex
3

. Large v ∝ 1/x5/2

• PDF has no variance, γ has no vigorous statistical estimate and is ∝ r−1/3
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• CLT is valid in its weakest form for the total energy

• CLT not valid for residual variance

• CLT is likely to be invalid for estimates of other physical quantites

• Because: ψ2 samples EL rarely where it is largest, at the nodal surface

Can the CLT be reinstated ?
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Residual sampling

Instead of sampling with P = Aψ2, sample with P = Aψ2/w, then

Est [Etot] =

∑
wEL∑
w

=
〈ψ|Ĥ|ψ〉 + Y

〈ψ|ψ〉 + X

and the residual variance,

Est

[∫
δ2dR

]
=

∑
w(EL − Etot)

2

∑
w

=

∫
ψ2(EL − Etot)

2dR + Y
∫
ψ2dR + X

Choose the weighting function

w(EL) =
ǫ2

(EL − E0)2 + ǫ2

to ‘interpolate’ beween sampling the numerator and denominator perfectly.

• No singularities, and no power law tails

• Quotient of two correlated random variables, each a sum of random variables
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Fieller’s Theorem
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• (µ2, µ1) that give Est = µ2/µ1
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Fieller’s Theorem

µ1

µ
2
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• (µ2, µ1) that give Est = µ2/µ1

• Ellipse containing 39% of probability from covariance matrix and bivariate CLT
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Fieller’s Theorem

µ1

µ
2

0 0.5 1 1.5
0

5

• (µ2, µ1) that give Est = µ2/µ1

• Ellipse containing 39% of probability from covariance matrix

• Wedge that contains 68.3% of probability

⇒m1 < µ2/µ1 < m2 with confidence 68.3%
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Estimate of total energy

Est[Etot]
-37.86 -37.84 -37.82
0

25

50

Histogram of 103 total energy estimates, each total energy estimate from 103 configurations.

• Residual sampling (filled) and standard sampling (unfilled) are not significantly different

• Residual sampling reduces error by ∼ 30%

• For other systems standard sampling may give ‘power law’ outliers (depending on λ)

• For all systems residual sampling does not give ‘power law’ outliers
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Estimate of residual variance

Est[v]
0 0.05 0.1 0.15 0.2 0.25

1000
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Histogram of 103 residual variance estimates, each estimated from 103 configurations.

• Residual sampling and standard sampling are very different

• Standard sampling shows the v−5/2 tails and outliers expected

• Residual sampling gives well defined confidence limits for estimate via the bivariate CLT

• Standard sampling does not
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Optimisation

1) Take samples using wavefunction with parameter α0, {R}r
2) These define random sample from a distribution of Optimisation functions, O(α)

3) Find the minimum of O(α), at α = αmin

4) set α0 = αmin, and return to 1)

What is the distribution of O(α)?

O(α) =
a0 + a1(α− α0) + . . .

b0 + b1(α− α0) + . . .

• For each type of sampling/optimisation this expansion gives statistics of random error

• For ‘Standard Sampling’ error is not normal unless the nodes are suppressed by introducing a

weight function into O(α) solely for this purpose (eg
∫
g(EL)δ

2d3N
R).

• For Residual sampling the error is always normal
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Optimisation

r = 105 configurations.

Total energy

no. cycle.

E
to
t/

(a
.u
.)

1 2 3 4 5

-37.84

-37.83

-37.82

↓ Std.

↑ Res.

Eexp

Residual variance

no. cycle.
V

ar
δ
2

1 2 3 4 5
0

0.05

0.1

↓ Std.

↑ Res.

Std. - standard sampling with nodal surface ‘suppressed’ (93% Ecorr)

Res. - residual sampling of residual variance (95% Ecorr)

• New sampling provides lower total energy and a lower residual variance than standard sampling

with nodal surface ‘suppressed’
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Conclusions

• We cannot assume the CLT is true for estimates in ‘standard sampling QMC’

• ‘r large’ enough must be shown to be true for each estimate in ‘standard sampling QMC’

• The CLT can be reinstated by using an alternative sampling strategy

• Random functions whose minimum gives ‘optimum’ wavefunctions are not generally normally dis-

tributed. Some do not converge as r → ∞
• The residual sampling strategy can guarantee that the CLT is valid for estimates and optimisation

functions, as long as they exist

• With residual sampling optimisation functions can be chosen on physical grounds - to give a good

wavefunction at the nodal surface and small fixed node error in DMC
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