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Monte Carlo in Quantum Mechanics

•N -body QM is about solving integral problems in 3N dimensions

• Monte Carlo provides stochastic estimates of integrals

For example, for VMC we usually choose to:

• Take r random samples in 3N -d space, R, from distribution ψ2(R)

• Gives random variable EL(R) = ψ−1Ĥψ

Then Monte Carlo with this choice of sampling gives

Estr

[

〈ψ|Ĥ|ψ〉
]

= Estr

[
∫

ψ2ELdR
]

=
1

r

r
∑

i=1

EL(Ri)

• The estimate provided is a sample value of a random variable
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What is its distribution?

Starts with samples from a random number generator of distribution ∝ ψ2

→ r samples of R

→ r samples of EL(R)

→ 1 sample of Estr [Etot] = 1/r
∑r

i=1
EL

are all random variables, with different distributions

r samples of R provide one sample of the total energy estimate

• Knowledge of its distribution is neccesary to obtain statistical error bars
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Central Limit Theorem

Distribution of EL is far from Gaussian:
P (E)

E − 〈E〉/(a.u.)

500-50

100

10−2

10−4

CLT showsa that 1/r
∑r

i=1
EL is a sample from a distribution that:

• is Gaussian (in large r limit)

• has mean 〈ψ|Ĥ|ψ〉

• has standard deviation σ =
√

Var[EL]/r

• 68.26895 % Confidence interval is ±σ about mean

• 99.99994 % Confidence interval is ±5σ about mean
aExcept when it doesn’t
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Is ψ2 the ‘best’ distribution to sample with?

Previous two slides sampled R with distribution ψ2 - ‘standard sampling’

• We can sample with a wide range of functions of R - average wEL sampled with ψ2/w

• Which function gives the smallest random error for r samples - the optimum function ?

• How much better than standard sampling is it ?

• Does the CLT still apply for optimum sampling ?
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Incomplete solution...

• General sampling, use P (R) = βψ2/w, with β a normalising constant

Estr [Etot] =
1

β

1

r

r
∑

i=1

wEL(Ri)

• CLT gives standard deviation in estimate of Etot

σ2 =
1

rβ2

[

〈(wEL)2〉 − 〈wEL〉2
]

• use definition of averages and β as integrals:

⇒ rσ2 =
∫

ψ2/wdR
∫

wψ2E2

LdR −
[
∫

ψ2ELdR
]2

• Find stationary values w.r.t variations in function w:

δσ2

δw
= 0 ⇒ w =

1

|EL|

The solution?
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Incomplete solution...

Estimate of total energy:

Estr [Etot] =
1

β
〈sgn(EL)〉r

Estimate of standard error in total energy:

Estr

[

σ2
]

=
1

β2
− 1

β2
〈sgn(EL)〉2r

• Optimum sampling depends on zero of energy

• β is treated as a fixed variable, but is defined by

1

β
=

∫

ψ2|EL|dR

so we need a MC estimate to evaluate it

• Most of the random error will be in β

⇒ This is not optimum sampling
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A more complete solution...

• Including the normalisation from the start, with unspecified w, gives

Estr [Etot] =
〈wEL〉r
〈w〉r

• Same as standard sampling for w = 1

• Optimum sampling is the w that minimises the random error in the estimate of this quotient

So, we need something more than the usual CLT, as this estimate of the total energy is a quotient of

two sums of random variables
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Are they independent ?

Considering the distribution of the numerator and denominator separately,

Y =
r

∑

i=1

w(Ri)EL(Ri) X =
r

∑

i=1

w(Ri)

so
Estr [Etot] =

Y

X

Both Y and X depend of R, so do they depend on each other?

For r = 1 they do - 1 random R provide 2 random variables

For r > 1 they do not - r random Rs are reduced to 2 random variables
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An example: r=1

〈w〉1

〈w
E

L
〉 1

10.80.60.40.2

-1

-2

-3

-4

-5

• 1000 samples of (Y,X) each constructed from 1 sample of R
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An example: r=2

〈w〉2

〈w
E

L
〉 2

10.80.60.40.2

-1

-2

-3

-4

-5

• 1000 samples of (Y,X) each constructed from 2 samples of R
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An example: r=1000

〈w〉1000

〈w
E

L
〉 10

0
0

0.820.780.76

-3.8

-3.9

-4

-4.1

• 1000 estimates of (Y,X) each constructed from 1000 samples of R
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Bivariate CLT

• Y and X alone both have a Gaussian distribution

• only partial linear correlation remains between Y and X

P (y, x) =
1

2π

r1/2

|C|1/2
exp(−s2/2)

s2 = r
[

c22(x− 〈X〉)2 − 2c12(x− 〈X〉)(y − 〈Y 〉) + c11(y − 〈Y 〉)2
]

/|C|

• C is the co-variance matrix, with elements c11, c12, c22

• This is analogous to the variance in 1d

• c12 measure the partial correlation between Y and X

• They can be estimated an analogous way to the variance for one variable
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Estimate and Error for arbitrary sampling

• Estimated total energy, for sampling with P ∝ ψ2/w

Estr [Etot] =
〈wEL〉r
〈w〉r

=
Y

X

• Confidence intervals from bivariate Gaussian via Fieller’s theorem:

lu,l =
(rY X − c12) ±

√

(rY X − c12)
2 − (rX2 − c11) (rY 2 − c22)

rX2 − c11

For 68.3% probability that ll < Estr[Etot] < lu

• This is the equivalent of ‘standard error = standard deviation/
√
r’ for the distribution of gradients

that give the estimate of the total energy
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Optimum Sampling

• What w gives the smallest confidence interval for r samples?

Using definition of C , Y , X , size of confidence interval is

(lu − ll)
2 =

q2

r

∫

ψ2/wdR
∫

wψ2(EL − Estr [Etot])
2dR

[
∫

ψ2dR]2

• Use the Estr [Etot] that we estimate, with mean Etot and variance (lu − ll)
2/4

• Take the mean of the equation for (lu − ll)
2

[
∫

ψ2dR
]2 r

q2
(lu − ll)

2 =
∫

ψ2

w
dR

∫

wψ2
[

(EL − Etot)
2 + (lu − ll)

2/4
]

• Find stationary values w.r.t variations in function w:

δ(lu − ll)
2

δw
= 0 ⇒ w =

1

[(EL − Etot)2 + (lu − ll)2/4]1/2
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Optimum Sampling

• Sample 3N -d space with P ∝ ψ2/w, where

w =
1

[(EL − E0)2 + ǫ2]1/2

where E0 is an estimate of the total energy, and ǫ is its standard error

• Independent of zero of energy

• No unknown normalisation constants

To apply it in practice:

• Estimates of E0 and ǫ required, but these do not bias results

• or self consistency
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Theoretical limit

• Results provides a theoretical limit to how small the statistical error can be for r samples (in the

large r limit)

• For standard sampling, the 68.3% confidence interval is 2ǫ in size, with

ǫ =
1√
r

[
∫

ψ2(EL − Etot)
2dR

]1/2

• For optimum sampling, the 68.3% confidence interval is 2ǫ in size, with

ǫ =
1√
r

∫

ψ2|EL − Etot|dR

• For a Gaussian distribution of EL optimum sampling error is 0.8× standard sampling error

• This ratio will get smaller the ‘fatter’ the distribution of EL
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A final point....

• We could sample with P = δ(EL − Etot), which gives the exact answer for one sample

• This is not a stochastic estimate, since exact Etot is required exactly
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What does optimum sampling give us ?

• Provides a theoretical limit to random error as a function of r

• Provides a measure of how close to optimum any sampling strategy is

• Bivariate analysis is applicable to most QMC methods

• Applicable to estimates of any operator

• If the CLT is invalid for standard sampling, then optimum sampling should reinstate it

What does it not tells us...

• Relative computational cost
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