Massive plane-wave calculations in massive simulation cells

Chris-Kriton Skylaris

with Peter D. Haynes, Arash A. Mostofi and Mike C. Payne

Theory of Condensed Matter group Cavendish Laboratory Madingley Road Cambridge CB3 0HE

ONETEP: Density-matrix linear-scaling DFT

- Optimise non-orthogonal localised functions $\{\phi_{\alpha}(\mathbf{r})\}\$ linear instead of orthogonal extended wavefunctions $\{\psi_{n}(\mathbf{r})\}\$ scaling
- Aim: to achieve the same accuracy as traditional plane-wave methods

Our basis set consists of plane-waves combined into spike-like "psinc" functions

0.75

$$D(\mathbf{r}) = \frac{1}{N} \sum_{\mathbf{G}}^{\mathbf{G}_{max}} e^{i\mathbf{G}\cdot\mathbf{r}}$$

$$\phi_{\alpha}(\mathbf{r}) = \sum_{m}^{\text{sim. cell}} D_{m}(\mathbf{r}) C_{m\alpha}$$

$$=\sum_{m}^{\text{sim. cell}} D(\mathbf{r}-\mathbf{r}_{m})C_{m\alpha}$$

$$C_{m\alpha} = 0$$
 if $m \notin$ sphere of α

Linear-scaling formulation

 $\rho(\mathbf{r}, \mathbf{r}') = \sum_{\alpha\beta} \phi_{\alpha}(\mathbf{r}) K^{\alpha\beta} \phi_{\beta}^{*}(\mathbf{r}')$ Density $n(\mathbf{r}) = 2 \rho(\mathbf{r}, \mathbf{r})$

Energy $E[n] = E[\{K^{\alpha\beta}\}, \{\phi_{\alpha}(\mathbf{r})\}] = E[\{K^{\alpha\beta}\}, \{C_{m\alpha}\}]$

Short-ranged: $\rho(\mathbf{r}, \mathbf{r}') \longrightarrow 0$ as $|\mathbf{r} - \mathbf{r}'| \longrightarrow \infty$ \Rightarrow impose cutoffs: $\phi_{\alpha}(\mathbf{r}) = 0$ when $|\mathbf{r} - \mathbf{R}_{\alpha}| > R_{\text{reg}}$

 $K^{\alpha\beta} = 0$ when $|\mathbf{R}_{\alpha} - \mathbf{R}_{\beta}| > R_{\mathrm{cut}}$

Idempotent:

$$\rho^{2}(\mathbf{r},\mathbf{r}') = \int \rho(\mathbf{r},\mathbf{r}'')\,\rho(\mathbf{r}'',\mathbf{r}')\,d^{3}r'' = \rho(\mathbf{r},\mathbf{r}')$$

Parallelisation Strategy

Demonstration with four processors (0 to 3)

Serial calculation

Parallel calculation

3

2

Phase 1

Distribution of atomic data (each processor holds only a subset of the { $\varphi \alpha$ })

 \Rightarrow Large number of atoms

Phase 2 (New work completed in July 2004) Distribution of simulation cell data (each processor holds only a slice of the charge density and local potentials)

 \Rightarrow Large simulation cells

0

Phase 2: Most challenging aspect - the FFTbox technique

- •Fourier transforms in small regions of the simulation cell, independent of system size
- •Each processor has its own FFTbox
- •Construction of the Hamiltonian matrix requires "filling" the FFTbox with "slices" of local potential from different processors
- •Construction of the charge density needs the opposite: "Deposit" the contents of each FFTbox to "slices" on different processors

•A complex yet efficient algorithm for communication between processors has been developed

Example: Plane-wave calculations in massive simulation cells!

Test - supercell approximation for a 500-atom capped nanotube. KE Cutoff 574eV. Rreg = 8.0 a0. $Rcut = \infty$. 96 processors (Franklin).

Conclusions

ONETEP is a pseudopotential DFT method with Plane-wave accuracy

•Linear-scaling w.r.t. to the number of atoms

- •Now also able to treat extremely large simulation cells
- •These simulation cell volumes can fit many thousands of atoms, so calculations of this size should now be possible
- •Speedups should result from future improvements in the new "Phase 2 parallelisation" code

Acknowledgments

Cambridge-Cranfield High Performance Computing Facility (CCHPCF) for access to "Franklin", their SUN-Fire 900-processor parallel supercomputer